1 Introduction
(1)
\[ {I_{{a^{+}}}^{\alpha }}y(x)=\frac{1}{\Gamma (\alpha )}{\int _{a}^{x}}\frac{y(\xi )}{{(x-\xi )^{1-\alpha }}}d\xi ,\hspace{1em}\text{for}\hspace{2.5pt}x\gt a,\](2)
\[ {I_{{b^{-}}}^{\alpha }}y(x)=\frac{1}{\Gamma (\alpha )}{\int _{x}^{b}}\frac{y(\xi )}{{(\xi -x)^{1-\alpha }}}d\xi ,\hspace{1em}\text{for}\hspace{2.5pt}x\lt b.\](3)
\[\begin{aligned}{}{^{R}}{I_{[a,b]}^{\alpha }}y(x)& =\frac{1}{2\Gamma (\alpha )\cos (\alpha \pi /2)}{\int _{a}^{b}}\frac{y(\xi )}{{|\xi -x|^{1-\alpha }}}d\xi \\ {} & =\frac{1}{2\cos (\alpha \pi /2)}\big({I_{{a^{+}}}^{\alpha }}y(x)+{I_{{b^{-}}}^{\alpha }}y(x)\big),\hspace{1em}\text{for}\hspace{2.5pt}a\lt x\lt b.\end{aligned}\]2 Numerical Algorithms
2.1 Spline Interpolations
(5)
\[ s(x)=\left\{\begin{array}{l@{\hskip4.0pt}l}{s_{0}}(x),\hspace{1em}& \text{if}\hspace{2.5pt}x\in [{x_{0}},{x_{1}}],\\ {} {s_{1}}(x),\hspace{1em}& \text{if}\hspace{2.5pt}x\in [{x_{1}},{x_{2}}],\\ {} \dots \hspace{1em}\\ {} {s_{N-1}}(x),\hspace{1em}& \text{if}\hspace{2.5pt}x\in [{x_{N-1}},{x_{N}}],\end{array}\right.\]2.1.1 Linear Spline Interpolation
(8)
\[\begin{aligned}{}y(x)& =\frac{x-{x_{i+1}}}{{x_{i}}-{x_{i+1}}}y({x_{i}})+\frac{x-{x_{i}}}{{x_{i+1}}-{x_{i}}}y({x_{i+1}})+\frac{{y^{\prime\prime }}({\bar{x}_{i}})}{2!}(x-{x_{i}})(x-{x_{i+1}})\\ {} & ={y_{i}}+\frac{{y_{i+1}}-{y_{i}}}{\Delta x}(x-{x_{i}})+\frac{{y^{\prime\prime }}({\bar{x}_{i}})}{2}(x-{x_{i}})(x-{x_{i+1}})\\ {} & ={s_{i}}(x)+\textit{Err}{1_{i}}(x),\end{aligned}\](10)
\[ \textit{Err}{1_{i}}(x)=\frac{{y^{\prime\prime }}({\bar{x}_{i}})}{2}(x-{x_{i}})(x-{x_{i+1}}),\]2.1.2 Quadratic Spline Interpolation
(12)
\[\begin{aligned}{}y(x)& =y({x_{i}})+{y^{\prime }}({x_{i}})(x-{x_{i}})+\frac{{y^{\prime\prime }}({x_{i}})}{2!}{(x-{x_{i}})^{2}}+\frac{{y^{\prime\prime\prime }}({x_{i}})}{3!}{(x-{x_{i}})^{3}}\\ {} & \hspace{1em}+\frac{{y^{(4)}}({\bar{x}_{1i}})}{4!}{(x-{x_{i}})^{4}},\end{aligned}\](13)
\[ \begin{aligned}{}& {y^{\prime }}({x_{i}})=\frac{1}{2\Delta x}\big(y({x_{i+1}})-y({x_{i-1}})\big)-\frac{{(\Delta x)^{2}}}{6}{y^{\prime\prime\prime }}({\bar{x}_{2i}}),\\ {} & {y^{\prime\prime }}({x_{i}})=\frac{1}{{(\Delta x)^{2}}}\big(y({x_{i+1}})-2y({x_{i}})+y({x_{i-1}})\big)-\frac{{(\Delta x)^{2}}}{12}{y^{(4)}}({\bar{x}_{3i}}),\end{aligned}\](14)
\[\begin{aligned}{}y(x)& =y({x_{i}})+\bigg(\frac{y({x_{i+1}})-y({x_{i-1}})}{2\Delta x}-\frac{{(\Delta x)^{2}}}{6}{y^{\prime\prime\prime }}({\bar{x}_{2i}})\bigg)(x-{x_{i}})\\ {} & \hspace{1em}+\frac{1}{2!}\bigg(\frac{y({x_{i+1}})-2y({x_{i}})+y({x_{i-1}})}{{(\Delta x)^{2}}}-\frac{{(\Delta x)^{2}}}{12}{y^{(4)}}({\bar{x}_{3i}})\bigg){(x-{x_{i}})^{2}}\\ {} & \hspace{1em}+\frac{{y^{\prime\prime\prime }}({x_{i}})}{3!}{(x-{x_{i}})^{3}}+\frac{{y^{(4)}}({\bar{x}_{1i}})}{4!}{(x-{x_{i}})^{4}},\end{aligned}\](15)
\[ y(x)={s_{i}}(x)+\textit{Err}{2_{i}}(x),\hspace{1em}\text{for}\hspace{2.5pt}x\in [{x_{i-1}},{x_{i+1}}],\](16)
\[ {s_{i}}(x)={y_{i}}+\frac{{y_{i+1}}-{y_{i-1}}}{2\Delta x}(x-{x_{i}})+\frac{{y_{i+1}}-2{y_{i}}+{y_{i-1}}}{2{(\Delta x)^{2}}}{(x-{x_{i}})^{2}}\](17)
\[\begin{aligned}{}\textit{Err}{2_{i}}(x)& =\frac{1}{6}{y^{\prime\prime\prime }}({x_{i}}){(x-{x_{i}})^{3}}-\frac{{(\Delta x)^{2}}}{6}{y^{\prime\prime\prime }}({\bar{x}_{2i}})(x-{x_{i}})\\ {} & \hspace{1em}+\frac{1}{24}{y^{(4)}}({\bar{x}_{1i}}){(x-{x_{i}})^{4}}-\frac{{(\Delta x)^{2}}}{24}{y^{(4)}}({\bar{x}_{3i}}){(x-{x_{i}})^{2}}\\ {} & \cong \frac{1}{6}\big({(x-{x_{i}})^{3}}-{(\Delta x)^{2}}(x-{x_{i}})\big){y^{\prime\prime\prime }}({\bar{x}_{i}})\\ {} & \hspace{1em}+\frac{1}{24}\big({(x-{x_{i}})^{4}}-{(\Delta x)^{2}}{(x-{x_{i}})^{2}}\big){y^{(4)}}({\bar{x}_{i}}),\end{aligned}\](19)
\[ {\bar{c}_{0,i}}={y_{i}},\hspace{2em}{\bar{c}_{1,i}}=\frac{{y_{i+1}}-{y_{i-1}}}{2\Delta x},\hspace{2em}{\bar{c}_{2,i}}=\frac{{y_{i-1}}-2{y_{i}}+{y_{i+1}}}{2{(\Delta x)^{2}}},\](20)
\[ {\bar{\bar{c}}_{0,i}}={y_{i}},\hspace{2em}{\bar{\bar{c}}_{1,i}}=\frac{-3{y_{i}}+4{y_{i+1}}-{y_{i+2}}}{2\Delta x},\hspace{2em}{\bar{\bar{c}}_{2,i}}=\frac{{y_{i}}-2{y_{i+1}}+{y_{i+2}}}{2{(\Delta x)^{2}}},\]2.1.3 Cubic Spline Interpolation
(21)
\[ {s_{i}}(x)={c_{0,i}}+{c_{1,i}}(x-{x_{i}})+{c_{2,i}}{(x-{x_{i}})^{2}}+{c_{3,i}}{(x-{x_{i}})^{3}},\]-
– the polynomials match the data points at both ends of each i-th sub-interval: ${s_{i}}({x_{i}})={y_{i}}$, ${s_{i}}({x_{i+1}})={y_{i+1}}$, for $i=0,1,\dots ,N-1$, (two conditions for each sub-interval give $2N$ dependencies in total).
-
– the spline interpolation must be smooth, therefore the following requirements are assumed for the first and second derivatives of the spline (which means that the slope and the curvature must be equal for each pair of neighbouring polynomials that join at each data point): ${s^{\prime }_{i-1}}({x_{i}})={s^{\prime }_{i}}({x_{i}})$, ${s^{\prime\prime }_{i-1}}({x_{i}})={s^{\prime\prime }_{i}}({x_{i}})$, for $i=1,2,\dots ,N-1$, (two conditions for each internal node give further $2N-2$ dependencies).
-
– the missing two additional conditions should be determined on the basis of the assumed integer order derivatives of the function $y(x$) in the boundary nodes ${x_{0}}$ and ${x_{N}}$ (colloquially called the end point conditions). Three variants of the cubic spline constructions are considered:
-
• variant 1: ${s^{\prime }_{0}}({x_{0}})={Y^{\prime }_{0}}$, ${s^{\prime }_{N-1}}({x_{N}})={Y^{\prime }_{N}}$,
-
• variant 2: ${s^{\prime\prime }_{0}}({x_{0}})={Y^{\prime\prime }_{0}}$, ${s^{\prime\prime }_{N-1}}({x_{N}})={Y^{\prime\prime }_{N}}$,
-
• variant 3: ${s^{\prime\prime\prime }_{0}}({x_{0}})={Y^{\prime\prime\prime }_{0}}$, ${s^{\prime\prime\prime }_{N-1}}({x_{N}})={Y^{\prime\prime\prime }_{N}}$,
-
(22)
\[\begin{aligned}{}& {c_{0,i}}={y_{i}},\\ {} & {c_{1,i}}=\frac{{y_{i+1}}-{y_{i}}}{\Delta x}-\frac{\Delta x}{3}({c_{2,i+1}}+2{c_{2,i}}),\\ {} & {c_{3,i}}=\frac{1}{3\Delta x}({c_{2,i+1}}-{c_{2,i}}),\end{aligned}\](24)
\[ \begin{aligned}{}& {s^{\prime }_{i}}(x)=\bigg(\frac{{y_{i+1}}-{y_{i}}}{\Delta x}-\frac{\Delta x}{3}({c_{2,i+1}}+2{c_{2,i}})\bigg)+2{c_{2,i}}(x-{x_{i}})\\ {} & \phantom{{s^{\prime }_{i}}(x)=}+\frac{1}{\Delta x}({c_{2,i+1}}-{c_{2,i}}){(x-{x_{i}})^{2}},\\ {} & {s^{\prime\prime }_{i}}(x)=2{c_{2,i}}+\frac{2}{\Delta x}({c_{2,i+1}}-{c_{2,i}})(x-{x_{i}}),\\ {} & {s^{\prime\prime\prime }_{i}}(x)=\frac{2}{\Delta x}({c_{2,i+1}}-{c_{2,i}}).\end{aligned}\](26)
\[ \begin{aligned}{}& {s^{\prime }_{0}}({x_{0}})=\frac{{y_{1}}-{y_{0}}}{\Delta x}-\frac{\Delta x}{3}({c_{2,1}}+2{c_{2,0}}),\\ {} & {s^{\prime\prime }_{0}}({x_{0}})=2{c_{2,0}},\\ {} & {s^{\prime\prime\prime }_{0}}({x_{0}})=\frac{2}{\Delta x}({c_{2,1}}-{c_{2,0}}),\\ {} & {s^{\prime }_{N-1}}({x_{N}})=\frac{{y_{N}}-{y_{N-1}}}{\Delta x}+\frac{\Delta x}{3}({c_{2,N-1}}+2{c_{2,N}}),\\ {} & {s^{\prime\prime }_{N-1}}({x_{N}})=2{c_{2,N}},\\ {} & {s^{\prime\prime\prime }_{N-1}}({x_{N}})=\frac{2}{\Delta x}({c_{2,N}}-{c_{2,N-1}}).\end{aligned}\]-
• variant 1: $2{c_{2,0}}+{c_{2,1}}=3\bigg(\displaystyle\frac{{y_{1}}-{y_{0}}}{{(\Delta x)^{2}}}-\displaystyle\frac{{{Y^{\prime }}_{0}}}{\Delta x}\bigg)$,${c_{2,N-1}}+2{c_{2,N}}=3\bigg(\displaystyle\frac{{{Y^{\prime }}_{N}}}{\Delta x}-\displaystyle\frac{{y_{N}}-{y_{N-1}}}{{(\Delta x)^{2}}}\bigg)$,
-
• variant 2: ${c_{2,0}}=\displaystyle\frac{1}{2}{Y^{\prime\prime }_{0}}$, ${c_{2,N}}=\displaystyle\frac{1}{2}{Y^{\prime\prime }_{N}}$,
-
• variant 3: ${c_{2,0}}-{c_{2,1}}=-\displaystyle\frac{\Delta x}{2}{Y^{\prime\prime\prime }_{0}}$, $-{c_{2,N-1}}+{c_{2,N}}=\displaystyle\frac{\Delta x}{2}{Y^{\prime\prime\prime }_{N}}$.
(27)
\[ \left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{\gamma _{0,0}}\hspace{1em}& {\gamma _{0,1}}\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& \cdots \hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\\ {} 1\hspace{1em}& 4\hspace{1em}& 1\hspace{1em}& 0\hspace{1em}& \hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\\ {} 0\hspace{1em}& 1\hspace{1em}& 4\hspace{1em}& 1\hspace{1em}& \hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\\ {} 0\hspace{1em}& 0\hspace{1em}& 1\hspace{1em}& 4\hspace{1em}& \hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\\ {} \vdots \hspace{1em}& \hspace{1em}& \hspace{1em}& \hspace{1em}& \ddots \hspace{1em}& \hspace{1em}& \hspace{1em}& \vdots \\ {} 0\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& \hspace{1em}& 4\hspace{1em}& 1\hspace{1em}& 0\\ {} 0\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& \hspace{1em}& 1\hspace{1em}& 4\hspace{1em}& 1\\ {} 0\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& 0\hspace{1em}& \cdots \hspace{1em}& 0\hspace{1em}& {\gamma _{N,N-1}}\hspace{1em}& {\gamma _{N,N}}\end{array}\right]\cdot \left[\begin{array}{c}{c_{2,0}}\\ {} {c_{2,1}}\\ {} {c_{2,2}}\\ {} {c_{2,3}}\\ {} \vdots \\ {} {c_{2,N-2}}\\ {} {c_{2,N-1}}\\ {} {c_{2,N}}\end{array}\right]=\left[\begin{array}{c}{d_{0}}\\ {} {d_{1}}\\ {} {d_{2}}\\ {} {d_{3}}\\ {} \vdots \\ {} {d_{N-2}}\\ {} {d_{N-1}}\\ {} {d_{N}}\end{array}\right],\]-
• for variant 1: ${\gamma _{0,0}}=2$, ${\gamma _{0,1}}=1$, ${d_{0}}=3\bigg(\displaystyle\frac{{y_{1}}-{y_{0}}}{{(\Delta x)^{2}}}-\displaystyle\frac{{Y^{\prime }_{0}}}{\Delta x}\bigg)$,${\gamma _{N,N-1}}=1$, ${\gamma _{N,N}}=2$, ${d_{N}}=3\bigg(\displaystyle\frac{{Y^{\prime }_{N}}}{\Delta x}-\displaystyle\frac{{y_{N}}-{y_{N-1}}}{{(\Delta x)^{2}}}\bigg)$,
-
• for variant 2: ${\gamma _{0,0}}=1$, ${\gamma _{0,1}}=0$, ${d_{0}}=\displaystyle\frac{1}{2}{Y^{\prime\prime }_{0}}$,${\gamma _{N,N-1}}=0$, ${\gamma _{N,N}}=1$, ${d_{N}}=\displaystyle\frac{1}{2}{Y^{\prime\prime }_{N}}$,
-
• for variant 3: ${\gamma _{0,0}}=1$, ${\gamma _{0,1}}=-1$, ${d_{0}}=-\displaystyle\frac{\Delta x}{2}{Y^{\prime\prime\prime }_{0}}$,${\gamma _{N,N-1}}=-1$, ${\gamma _{N,N}}=1$, ${d_{N}}=\displaystyle\frac{\Delta x}{2}{Y^{\prime\prime\prime }_{N}}$.
(29)
\[\begin{aligned}{}& \begin{aligned}{}& {Y^{\prime }_{0}}\cong \frac{1}{\Delta x}\bigg(-\frac{25}{12}{y_{0}}+4{y_{1}}-3{y_{2}}+\frac{4}{3}{y_{3}}-\frac{1}{4}{y_{4}}\bigg),\\ {} & {Y^{\prime }_{N}}\cong \frac{1}{\Delta x}\bigg(\frac{25}{12}{y_{N}}-4{y_{N-1}}+3{y_{N-2}}-\frac{4}{3}{y_{N-3}}+\frac{1}{4}{y_{N-4}}\bigg),\end{aligned}\end{aligned}\](30)
\[\begin{aligned}{}& \begin{aligned}{}& {Y^{\prime\prime }_{0}}\cong \frac{1}{{(\Delta x)^{2}}}\bigg(\frac{15}{4}{y_{0}}-\frac{77}{6}{y_{1}}+\frac{107}{6}{y_{2}}-13{y_{3}}+\frac{61}{12}{y_{4}}-\frac{5}{6}{y_{5}}\bigg),\\ {} & {Y^{\prime\prime }_{N}}\cong \frac{1}{{(\Delta x)^{2}}}\bigg(\frac{15}{4}{y_{N}}-\frac{77}{6}{y_{N-1}}+\frac{107}{6}{y_{N-2}}-13{y_{N-3}}+\frac{61}{12}{y_{N-4}}-\frac{5}{6}{y_{N-5}}\bigg),\end{aligned}\end{aligned}\](31)
\[\begin{aligned}{}& \begin{aligned}{}& {Y^{\prime\prime\prime }_{0}}\cong \frac{1}{{(\Delta x)^{3}}}\bigg(-\frac{49}{8}{y_{0}}+29{y_{1}}-\frac{461}{8}{y_{2}}+62{y_{3}}-\frac{307}{8}{y_{4}}+13{y_{5}}-\frac{15}{8}{y_{6}}\bigg),\\ {} & {Y^{\prime\prime\prime }_{N}}\cong \frac{1}{{(\Delta x)^{3}}}\bigg(\frac{49}{8}{y_{N}}-29{y_{N-1}}+\frac{461}{8}{y_{N-2}}-62{y_{N-3}}+\frac{307}{8}{y_{N-4}}\\ {} & \phantom{{Y^{\prime\prime\prime }_{N}}\cong }-13{y_{N-5}}+\frac{15}{8}{y_{N-6}}\bigg).\end{aligned}\end{aligned}\]2.2 Numerical Integration
(33)
\[\begin{aligned}{}{\left.{I_{{a^{+}}}^{\alpha }}y(x)\right|_{x=g}}& \cong {\left.{I_{{a^{+}}}^{\alpha }}s(x)\right|_{x=g={x_{M}}}}=\frac{1}{\Gamma (\alpha )}{\int _{a}^{g}}\frac{s(\xi )}{{(g-\xi )^{1-\alpha }}}d\xi \\ {} & ={\sum \limits_{i=0}^{M-1}}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i}}}^{{x_{i+1}}}}\frac{{s_{i}}(\xi )}{{({x_{M}}-\xi )^{1-\alpha }}}d\xi ,\hspace{1em}\text{for}\hspace{2.5pt}M=1,\dots ,N,\end{aligned}\](34)
\[\begin{aligned}{}{\left.{I_{{b^{-}}}^{\alpha }}y(x)\right|_{x=g}}& \cong {\left.{I_{{b^{-}}}^{\alpha }}s(x)\right|_{x=g={x_{M}}}}=\frac{1}{\Gamma (\alpha )}{\int _{g}^{b}}\frac{s(\xi )}{{(\xi -g)^{1-\alpha }}}d\xi \\ {} & ={\sum \limits_{i=M}^{N-1}}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i}}}^{{x_{i+1}}}}\frac{{s_{i}}(\xi )}{{(\xi -{x_{M}})^{1-\alpha }}}d\xi ,\hspace{1em}\text{for}\hspace{2.5pt}M=0,\dots ,N-1.\end{aligned}\](35)
\[ {s_{i}}(x)={\sum \limits_{k=0}^{p}}{c_{k,i}}{\big(x-(a+i\hspace{0.1667em}\Delta x)\big)^{k}}\](36)
\[\begin{aligned}{}{\left.{I_{{a^{+}}}^{\alpha }}s(x)\right|_{x={x_{M}}}}& ={\sum \limits_{i=0}^{M-1}}\frac{1}{\Gamma (\alpha )}{\int _{a+i\Delta x}^{a+(i+1)\Delta x}}\frac{{\textstyle\textstyle\sum _{k=0}^{p}}{c_{k,i}}{(\xi -(a+i\Delta x))^{k}}}{{(a+M\Delta x-\xi )^{1-\alpha }}}d\xi \\ {} & ={\sum \limits_{i=0}^{M-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}\Bigg(\frac{1}{\Gamma (\alpha )}{\int _{a+i\Delta x}^{a+(i+1)\Delta x}}\frac{{(\xi -(a+i\Delta x))^{k}}}{{(a+M\Delta x-\xi )^{1-\alpha }}}d\xi \Bigg)\end{aligned}\](37)
\[ {\left.{I_{{a^{+}}}^{\alpha }}s(x)\right|_{x={x_{M}}}}={\sum \limits_{i=0}^{M-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}{J_{i,M}^{L,k}},\](38)
\[\begin{aligned}{}& {J_{i,M}^{L,k}}=\frac{1}{\Gamma (\alpha )}{\int _{a+i\Delta x}^{a+(i+1)\Delta x}}\frac{{(\xi -(a+i\Delta x))^{k}}}{{(a+M\Delta x-\xi )^{1-\alpha }}}d\xi \\ {} & \stackrel{\xi =a+(u+i)\Delta x}{=}\frac{{(\Delta x)^{\alpha +k}}}{\Gamma (\alpha )}{\int _{0}^{1}}\frac{{u^{k}}}{{(M-i-u)^{1-\alpha }}}du\\ {} & \phantom{{J_{i,M}^{L,k}}}=\frac{{(\Delta x)^{\alpha +k}}}{\Gamma (\alpha +k+1)}\big(k!{(M-i)^{\alpha +k}}-{d_{i,M}^{L,k}}{(M-i-1)^{\alpha }}\big),\end{aligned}\](39)
\[ {d_{i,M}^{L,k}}=\left\{\begin{array}{l@{\hskip4.0pt}l}1,\hspace{1em}& \text{if}\hspace{2.5pt}k=0,\\ {} (M-i-1)+(\alpha +1),\hspace{1em}& \text{if}\hspace{2.5pt}k=1,\\ {} 2{(M-i-1)^{2}}+2(\alpha +2)(M-i-1)+(\alpha +1)(\alpha +2),\hspace{1em}& \text{if}\hspace{2.5pt}k=2,\\ {} 6{(M-i-1)^{3}}+6(\alpha +3){(M-i-1)^{2}}\hspace{1em}\\ {} \hspace{1em}+3(\alpha +2)(\alpha +3)(M-i-1)+(\alpha +1)(\alpha +2)(\alpha +3),\hspace{1em}& \text{if}\hspace{2.5pt}k=3.\end{array}\right.\](40)
\[\begin{aligned}{}{I_{{b^{-}}}^{\alpha }}s(x){\big|_{x={x_{M}}}}& ={\sum \limits_{i=M}^{N-1}}\frac{1}{\Gamma (\alpha )}{\int _{a+i\Delta x}^{a+(i+1)\Delta x}}\frac{{\textstyle\textstyle\sum _{k=0}^{p}}{c_{k,i}}{(\xi -(a+i\Delta x))^{k}}}{{(\xi -(a+M\Delta x))^{1-\alpha }}}d\xi \\ {} & ={\sum \limits_{i=M}^{N-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}\Bigg(\frac{1}{\Gamma (\alpha )}{\int _{a+i\Delta x}^{a+(i+1)\Delta x}}\frac{{(\xi -(a+i\Delta x))^{k}}}{{(\xi -(a+M\Delta x))^{1-\alpha }}}d\xi \Bigg)\end{aligned}\](41)
\[ {I_{{b^{-}}}^{\alpha }}s(x){\big|_{x={x_{M}}}}={\sum \limits_{i=M}^{N-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}{J_{i,M}^{R,k}},\](42)
\[\begin{aligned}{}& {J_{i,M}^{R,k}}=\frac{1}{\Gamma (\alpha )}{\int _{a+i\Delta x}^{a+(i+1)\Delta x}}\frac{{(\xi -(a+i\Delta x))^{k}}}{{(\xi -(a+M\Delta x))^{1-\alpha }}}d\xi \\ {} & \stackrel{\xi =a+(u+i)\Delta x}{=}\frac{{(\Delta x)^{k+\alpha }}}{\Gamma (\alpha )}{\int _{0}^{1}}\frac{{u^{k}}}{{(i-M+u)^{1-\alpha }}}du\\ {} & \phantom{{J_{i,M}^{R,k}}}=\frac{{(\Delta x)^{\alpha +k}}}{\Gamma (\alpha +k+1)}\big({(-1)^{k+1}}k!{(i-M)^{\alpha +k}}+{d_{i,M}^{R,k}}{(i-M+1)^{\alpha }}\big),\end{aligned}\](43)
\[ {d_{i,M}^{R,k}}=\left\{\begin{array}{l@{\hskip4.0pt}l}1,\hspace{1em}& \text{if}\hspace{2.5pt}k=0,\\ {} -(i-M+1)+(\alpha +1),\hspace{1em}& \text{if}\hspace{2.5pt}k=1,\\ {} 2{(i-M+1)^{2}}-2(\alpha +2)(i-M+1)+(\alpha +2)(\alpha +1),\hspace{1em}& \text{if}\hspace{2.5pt}k=2,\\ {} \begin{array}{l}-6{(i-M+1)^{3}}+6(\alpha +3){(i-M+1)^{2}}\\ {} \hspace{0.2778em}-3(\alpha +2)(\alpha +3)(i-M+1)+(\alpha +3)(\alpha +2)(\alpha +1),\end{array}\hspace{1em}& \text{if}\hspace{2.5pt}k=3.\end{array}\right.\](44)
\[\begin{aligned}{}{^{R}}{I_{[a,b]}^{\alpha }}y(x){\big|_{x=g}}& =\frac{1}{2\cos (\alpha \pi /2)}\big({{I_{{a^{+}}}^{\alpha }}y(x)\big|_{x=g}}+{{I_{{b^{-}}}^{\alpha }}y(x)\big|_{x=g}}\big)\\ {} & \cong \frac{1}{2\cos (\alpha \pi /2)}\big({{I_{{a^{+}}}^{\alpha }}s(x)\big|_{x=g={x_{M}}}}+{{I_{{b^{-}}}^{\alpha }}s(x)\big|_{x=g={x_{M}}}}\big)\\ {} & =\frac{1}{2\cos (\alpha \pi /2)}\Bigg({\sum \limits_{i=0}^{M-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}{J_{i,M}^{L,k}}+{\sum \limits_{i=M}^{N-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}{J_{i,M}^{R,k}}\Bigg)\\ {} & =\frac{1}{2\cos (\alpha \pi /2)}{\sum \limits_{i=0}^{N-1}}{\sum \limits_{k=0}^{p}}{c_{k,i}}\left\{\begin{array}{l@{\hskip4.0pt}l}{J_{i,M}^{L,k}},\hspace{1em}& \text{if}\hspace{2.5pt}i=0,\dots ,M-1,\\ {} {J_{i,M}^{R,k}},\hspace{1em}& \text{if}\hspace{2.5pt}i=M,\dots ,N-1,\end{array}\right.\end{aligned}\]2.3 Error Estimate for the Composite Scheme of Integration
2.3.1 The Case of the Linear Spline
(45)
\[\begin{aligned}{}\textit{Err}& ={\sum \limits_{i=0}^{N-1}}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i}}}^{{x_{i+1}}}}\frac{\textit{Err}{1_{i}}(\xi )}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & ={\sum \limits_{i=0}^{N-1}}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i}}}^{{x_{i+1}}}}\frac{1}{2}(\xi -{x_{i}})(\xi -{x_{i+1}}){y^{\prime\prime }}({\bar{x}_{i}})\frac{1}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & \leqslant \frac{1}{2}\underset{i=0,1,\dots ,N-1}{\max }\big|{y^{\prime\prime }}({\bar{x}_{i}})\big|{\sum \limits_{i=0}^{N-1}}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i}}}^{{x_{i+1}}}}\frac{(\xi -{x_{i}})(\xi -{x_{i+1}})}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & =\frac{1}{2}{M_{2}}\hspace{0.1667em}{\theta _{2}^{N}}(\alpha ,\Delta x),\end{aligned}\](46)
\[ \begin{aligned}{}& {M_{2}}=\underset{i=0,1,\dots ,N-1}{\max }\big|{y^{\prime\prime }}({\bar{x}_{i}})\big|,\\ {} & {\theta _{2}^{N}}(\alpha ,\Delta x)={\sum \limits_{i=0}^{N-1}}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i}}}^{{x_{i+1}}}}\frac{(\xi -{x_{i}})(\xi -{x_{i+1}})}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & \hspace{34.14322pt}\stackrel{\xi ={x_{i}}+u\Delta x}{=}{\sum \limits_{i=0}^{N-1}}\frac{{(\Delta x)^{2+\alpha }}}{\Gamma (\alpha )}{\int _{0}^{1}}\frac{u(u-1)}{{(N-i-u)^{1-\alpha }}}du.\end{aligned}\](47)
\[ {\theta _{2}^{N}}(\alpha ,\Delta x)={(\Delta x)^{2+\alpha }}\Bigg(-\frac{2{N^{3+\alpha }}}{\Gamma (3+\alpha )}+\frac{1}{\Gamma (2+\alpha )}\Bigg(2{\sum \limits_{i=1}^{N}}{i^{1+\alpha }}-{N^{1+\alpha }}\Bigg)\Bigg).\](48)
\[ {\theta _{2}^{N}}(\alpha ,\Delta x)={(\Delta x)^{2+\alpha }}\bigg({C_{2}}(\alpha )+\frac{1}{6\hspace{0.2778em}\Gamma (1+\alpha )}{N^{\alpha }}\bigg),\](49)
\[ {C_{2}}(\alpha )=-\frac{2}{\Gamma (3+\alpha )}+\frac{1}{\Gamma (2+\alpha )}-\frac{1}{6\hspace{0.2778em}\Gamma (1+\alpha )}.\](50)
\[\begin{aligned}{}\textit{Err}& \leqslant \frac{1}{2}{M_{2}}\bigg({(\Delta x)^{2+\alpha }}\bigg({C_{2}}(\alpha )+\frac{1}{6\hspace{0.2778em}\Gamma (1+\alpha )}{\bigg(\frac{b-a}{\Delta x}\bigg)^{\alpha }}\bigg)\bigg)\\ {} & ={M_{2}}\bigg(\frac{{C_{2}}(\alpha )}{2}{(\Delta x)^{2+\alpha }}+\frac{{(b-a)^{\alpha }}}{12\hspace{0.2778em}\Gamma (1+\alpha )}{(\Delta x)^{2}}\bigg)\\ {} & ={M_{2}}\frac{{(b-a)^{\alpha }}}{12\hspace{0.2778em}\Gamma (1+\alpha )}{(\Delta x)^{2}}+\mathrm{O}\big({(\Delta x)^{2+\alpha }}\big).\end{aligned}\]2.3.2 The Case of the Quadratic Spline
(51)
\[\begin{aligned}{}\textit{Err}& =\sum \limits_{i=1,3,\dots ,N-1}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i-1}}}^{{x_{i+1}}}}\frac{\textit{Err}{2_{i}}(\xi )}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & =\sum \limits_{i=1,3,\dots ,N-1}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i-1}}}^{{x_{i+1}}}}\left(\frac{1}{6}\big({(\xi -{x_{i}})^{3}}-{(\Delta x)^{2}}(\xi -{x_{i}})\big){y^{\prime\prime\prime }}({\bar{x}_{i}})\right.\\ {} & \hspace{1em}\left.+\frac{1}{24}\big({(\xi -{x_{i}})^{4}}-{(\Delta x)^{2}}{(\xi -{x_{i}})^{2}}\big){y^{(4)}}({\bar{x}_{i}})\right)\frac{1}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & \leqslant \frac{1}{6}\underset{i=1,3,\dots ,N-1}{\max }\big|{y^{\prime\prime\prime }}({\bar{x}_{i}})\big|\\ {} & \hspace{1em}\times \sum \limits_{i=1,3,\dots ,N-1}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i-1}}}^{{x_{i+1}}}}\frac{{(\xi -{x_{i}})^{3}}-{(\Delta x)^{2}}(\xi -{x_{i}})}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & \hspace{1em}+\frac{1}{24}\underset{i=1,3,\dots ,N-1}{\max }\big|{y^{(4)}}({\bar{x}_{i}})\big|\\ {} & \hspace{1em}\times \sum \limits_{i=1,3,\dots ,N-1}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i-1}}}^{{x_{i+1}}}}\frac{{(\xi -{x_{i}})^{4}}-{(\Delta x)^{2}}{(\xi -{x_{i}})^{2}}}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & =\frac{1}{6}{M_{3}}\hspace{0.2778em}{\theta _{3}^{N}}(\alpha ,\Delta x)+\frac{1}{24}{M_{4}}\hspace{0.2778em}{\theta _{4}^{N}}(\alpha ,\Delta x),\end{aligned}\](52)
\[\begin{aligned}{}& {M_{3}}=\underset{i=1,3,\dots ,N-1}{\max }\big|{y^{\prime\prime\prime }}({\bar{x}_{i}})\big|,\hspace{2em}{M_{4}}=\underset{i=1,3,\dots ,N-1}{\max }\big|{y^{(4)}}({\bar{x}_{i}})\big|,\end{aligned}\](53)
\[\begin{aligned}{}& \begin{aligned}{}& {\theta _{3}^{N}}(\alpha ,\Delta x)=\sum \limits_{i=1,3,\dots ,N-1}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i-1}}}^{{x_{i+1}}}}\frac{{(\xi -{x_{i}})^{3}}-{(\Delta x)^{2}}(\xi -{x_{i}})}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & \hspace{31.2982pt}\stackrel{\xi ={x_{i}}+u\Delta x}{=}{\sum \limits_{i=1,3,\dots ,N-1}^{}}\frac{{(\Delta x)^{3+\alpha }}}{\Gamma (\alpha )}{\int _{-1}^{1}}\frac{{u^{3}}-u}{{(N-i-u)^{1-\alpha }}}du,\\ {} & {\theta _{4}^{N}}(\alpha ,\Delta x)=\sum \limits_{i=1,3,\dots ,N-1}\frac{1}{\Gamma (\alpha )}{\int _{{x_{i-1}}}^{{x_{i+1}}}}\frac{{(\xi -{x_{i}})^{4}}-{(\Delta x)^{2}}{(\xi -{x_{i}})^{2}}}{{({x_{N}}-\xi )^{1-\alpha }}}d\xi \\ {} & \hspace{31.2982pt}\stackrel{\xi ={x_{i}}+u\Delta x}{=}\sum \limits_{i=1,3,\dots ,N-1}\frac{{(\Delta x)^{4+\alpha }}}{\Gamma (\alpha )}{\int _{-1}^{1}}\frac{{u^{4}}-{u^{2}}}{{(N-i-u)^{1-\alpha }}}du.\end{aligned}\end{aligned}\](54)
\[ \begin{aligned}{}& {\theta _{3}^{N}}(\alpha ,\Delta x)\\ {} & \hspace{1em}={(\Delta x)^{3+\alpha }}\left(\frac{6{N^{3+\alpha }}}{\Gamma (4+\alpha )}-\frac{6}{\Gamma (3+\alpha )}\Bigg({2^{3+\alpha }}{\sum \limits_{i=1}^{N/2}}{i^{2+\alpha }}-{N^{2+a}}\Bigg)+\frac{2{N^{1+\alpha }}}{\Gamma (2+\alpha )}\right),\\ {} & {\theta _{4}^{N}}(\alpha ,\Delta x)\\ {} & \hspace{1em}={(\Delta x)^{4+\alpha }}\Bigg(\frac{24{N^{4+\alpha }}}{\Gamma (5+\alpha )}-\frac{24}{\Gamma (4+\alpha )}\Bigg({2^{4+\alpha }}{\sum \limits_{i=1}^{N/2}}{i^{3+\alpha }}-{N^{3+a}}\Bigg)\\ {} & \hspace{2em}+\frac{10{N^{2+\alpha }}}{\Gamma (3+\alpha )}-\frac{2}{\Gamma (2+\alpha )}\Bigg({2^{2+\alpha }}{\sum \limits_{i=1}^{N/2}}{i^{1+\alpha }}-{N^{1+a}}\Bigg)\Bigg).\end{aligned}\](55)
\[ \begin{aligned}{}& {\theta _{3}^{N}}(\alpha ,\Delta x)={(\Delta x)^{3+\alpha }}\bigg({C_{3}}(\alpha )+\frac{2}{15\hspace{0.2778em}\Gamma (\alpha )}{N^{\alpha -1}}\bigg),\\ {} & {\theta _{4}^{N}}(\alpha ,\Delta x)\cong {(\Delta x)^{4+\alpha }}\bigg({C_{4}}(\alpha )-\frac{2}{15\hspace{0.2778em}\Gamma (\alpha +1)}{N^{\alpha }}+\frac{2(\alpha -1)}{45\Gamma (\alpha )}{N^{\alpha -2}}\bigg),\end{aligned}\](56)
\[ \begin{aligned}{}{C_{3}}(\alpha )& =-\frac{3\cdot {2^{4+\alpha }}}{\Gamma (4+\alpha )}-\frac{3\cdot {2^{3+\alpha }}}{\Gamma (3+\alpha )}+\frac{{2^{2+\alpha }}}{\Gamma (2+\alpha )}-\frac{{2^{\alpha }}}{15\hspace{0.2778em}\Gamma (\alpha )},\\ {} {C_{4}}(\alpha )& =-\frac{6(2+\alpha ){2^{5+\alpha }}}{\Gamma (5+\alpha )}+\frac{5\cdot {2^{3+\alpha }}}{\Gamma (3+\alpha )}-\frac{{2^{2+\alpha }}}{\Gamma (2+\alpha )}+\frac{{2^{1+\alpha }}}{15\hspace{0.2778em}\Gamma (1+\alpha )}\\ {} & \hspace{1em}-\frac{(\alpha -1){2^{\alpha }}}{90\hspace{0.2778em}\Gamma (\alpha )}.\end{aligned}\](57)
\[\begin{aligned}{}\textit{Err}& \leqslant \frac{1}{6}{M_{3}}\bigg({C_{3}}(\alpha ){(\Delta x)^{3+\alpha }}+\frac{2{(b-a)^{\alpha -1}}}{15\hspace{0.2778em}\Gamma (\alpha )}{(\Delta x)^{4}}\bigg)\\ {} & \hspace{1em}+\frac{1}{24}{M_{4}}\left({C_{4}}(\alpha ){(\Delta x)^{4+\alpha }}-\frac{2{(b-a)^{\alpha }}}{15\hspace{0.2778em}\Gamma (\alpha +1)}{(\Delta x)^{4}}\right.\\ {} & \hspace{1em}\left.+\frac{2(\alpha -1){(b-a)^{\alpha -2}}}{45\hspace{0.2778em}\Gamma (\alpha )}{(\Delta x)^{6}}\right).\end{aligned}\](58)
\[ \textit{Err}=\left\{\begin{array}{l@{\hskip4.0pt}l}{M_{3}}\frac{{C_{3}}(\alpha )}{6}{(\Delta x)^{3+\alpha }}+\mathrm{O}\big({(\Delta x)^{4}}\big),\hspace{1em}& \text{for}\hspace{2.5pt}\alpha \lt 1,\\ {} \begin{array}{l}\bigg({M_{3}}\frac{{(b-a)^{\alpha -1}}}{45\hspace{0.2778em}\Gamma (\alpha )}-{M_{4}}\frac{{(b-a)^{\alpha }}}{180\hspace{0.2778em}\Gamma (\alpha +1)}\bigg){(\Delta x)^{4}}\\ {} \hspace{1em}+\mathrm{O}\big({(\Delta x)^{3+\alpha }}\big),\end{array}\hspace{1em}& \text{for}\hspace{2.5pt}\alpha \geqslant 1.\end{array}\right.\]2.3.3 The Case of the Cubic Spline
(59)
\[\begin{aligned}{}\textit{Err}& =\big\| {\left.{I_{{a^{+}}}^{\alpha }}y(x)\right|_{x=b}}-{\left.{I_{{a^{+}}}^{\alpha }}s(x)\right|_{x=b}}\big\| =\big\| {\left.{I_{{a^{+}}}^{\alpha }}\big(y(x)-s(x)\big)\right|_{x=b}}\big\| \\ {} & \leqslant {\left.{I_{{a^{+}}}^{\alpha }}\big\| y(x)-s(x)\big\| \right|_{x=b}}\leqslant \big\| y(x)-s(x)\big\| {\left.{I_{{a^{+}}}^{\alpha }}1\right|_{x=b}}\\ {} & =\big\| y(x)-s(x)\big\| \frac{{(b-a)^{\alpha }}}{\Gamma (1+\alpha )}.\end{aligned}\](60)
\[ \textit{Err}\leqslant \frac{5\hspace{0.1667em}{M_{4}}}{384}\frac{{(b-a)^{\alpha }}}{\Gamma (1+\alpha )}{(\Delta x)^{4}},\]3 Examples of Computations
Example 1.
(67)
\[\begin{aligned}{}{\left.{I_{{0^{+}}}^{\alpha }}y(x)\right|_{x=b}}& =\frac{\Gamma (9)}{\Gamma (9+\alpha )}{b^{8+\alpha }}-8\frac{\Gamma (8)}{\Gamma (8+\alpha )}{b^{7+\alpha }}+26\frac{\Gamma (7)}{\Gamma (7+\alpha )}{b^{6+\alpha }}\\ {} & \hspace{1em}-44\frac{\Gamma (6)}{\Gamma (6+\alpha )}{b^{5+\alpha }}+40\frac{\Gamma (5)}{\Gamma (5+\alpha )}{b^{4+\alpha }}-15\frac{\Gamma (4)}{\Gamma (4+\alpha )}{b^{3+\alpha }}\\ {} & \hspace{1em}-4\frac{\Gamma (3)}{\Gamma (3+\alpha )}{b^{2+\alpha }}+5\frac{\Gamma (2)}{\Gamma (2+\alpha )}{b^{1+\alpha }}+\frac{\Gamma (1)}{\Gamma (1+\alpha )}{b^{\alpha }},\end{aligned}\]Table 1
α | N | Linear spline | Quadratic spline | Cubic spline | |||||||
Variant 1 | Variant 2 | Variant 3 | |||||||||
${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ||
0.4 | 100 | 3.080E−05 | – | −3.510E−06 | – | 2.858E−08 | – | 1.447E−07 | – | 3.949E−07 | – |
200 | 7.018E−06 | 2.134 | −3.700E−07 | 3.246 | 4.080E−09 | 2.808 | 8.520E−09 | 4.086 | 2.026E−08 | 4.285 | |
400 | 1.637E−06 | 2.100 | −3.739E−08 | 3.307 | 3.188E−10 | 3.678 | 4.996E−10 | 4.092 | 1.054E−09 | 4.265 | |
800 | 3.880E−07 | 2.076 | −3.687E−09 | 3.342 | 2.177E−11 | 3.873 | 2.957E−11 | 4.079 | 5.576E−11 | 4.240 | |
1600 | 9.313E−08 | 2.059 | −3.582E−10 | 3.363 | 1.418E−12 | 3.940 | 1.769E−12 | 4.063 | 3.008E−12 | 4.213 | |
3200 | 2.256E−08 | 2.045 | −3.449E−11 | 3.377 | 9.063E−14 | 3.968 | 1.068E−13 | 4.050 | 1.654E−13 | 4.185 | |
6400 | 5.505E−09 | 2.035 | −3.302E−12 | 3.385 | 5.743E−15 | 3.980 | 6.497E−15 | 4.039 | 9.271E−15 | 4.157 | |
12800 | 1.351E−09 | 2.027 | −3.150E−13 | 3.390 | 3.622E−16 | 3.987 | 3.977E−16 | 4.030 | 5.290E−16 | 4.131 | |
0.7 | 100 | 8.235E−05 | – | −9.581E−07 | – | 3.687E−08 | – | 8.270E−08 | – | 1.814E−07 | – |
200 | 2.047E−05 | 2.008 | −8.226E−08 | 3.542 | 3.259E−09 | 3.500 | 4.657E−09 | 4.151 | 8.352E−09 | 4.441 | |
400 | 5.102E−06 | 2.004 | −6.841E−09 | 3.588 | 2.237E−10 | 3.865 | 2.691E−10 | 4.113 | 4.084E−10 | 4.354 | |
800 | 1.273E−06 | 2.002 | −5.574E−10 | 3.617 | 1.440E−11 | 3.958 | 1.596E−11 | 4.075 | 2.123E−11 | 4.265 | |
1600 | 3.180E−07 | 2.001 | −4.479E−11 | 3.638 | 9.089E−13 | 3.985 | 9.654E−13 | 4.048 | 1.165E−12 | 4.188 | |
3200 | 7.946E−08 | 2.001 | −3.563E−12 | 3.652 | 5.702E−14 | 3.994 | 5.912E−14 | 4.030 | 6.671E−14 | 4.127 | |
6400 | 1.986E−08 | 2.001 | −2.814E−13 | 3.662 | 3.570E−15 | 3.998 | 3.648E−15 | 4.018 | 3.938E−15 | 4.082 | |
12800 | 4.963E−09 | 2.000 | −2.211E−14 | 3.670 | 2.233E−16 | 3.999 | 2.263E−16 | 4.011 | 2.373E−16 | 4.053 | |
1.4 | 100 | 1.984E−04 | – | −6.312E−08 | – | 2.960E−08 | – | 4.681e-08 | – | 8.388E−08 | – |
200 | 4.961E−05 | 2.000 | −3.301E−09 | 4.257 | 2.226E−09 | 3.733 | 2.65509 | 4.140 | 3.790E−09 | 4.468 | |
400 | 1.240E−05 | 2.000 | −1.772E−10 | 4.220 | 1.453E−10 | 3.937 | 1.567E−10 | 4.083 | 1.917E−10 | 4.305 | |
800 | 3.101E−06 | 2.000 | −9.734E−12 | 4.186 | 9.178E−12 | 3.985 | 9.500E−12 | 4.044 | 1.058E−11 | 4.179 | |
1600 | 7.752E−07 | 2.000 | −5.460E−13 | 4.156 | 5.751E−13 | 3.996 | 5.846E−13 | 4.022 | 6.182E−13 | 4.098 | |
3200 | 1.938E−07 | 2.000 | −3.120E−14 | 4.129 | 3.597E−14 | 3.999 | 3.626E−14 | 4.011 | 3.730E−14 | 4.051 | |
6400 | 4.845E−08 | 2.000 | −1.812E−15 | 4.106 | 2.248E−15 | 4.000 | 2.257E−15 | 4.006 | 2.290E−15 | 4.026 | |
12800 | 1.211E−08 | 2.000 | −1.068E−16 | 4.085 | 1.405E−16 | 4.000 | 1.408E−16 | 4.003 | 1.418E−16 | 4.013 | |
2.7 | 100 | 2.740E−04 | – | −1.357E−07 | – | 3.425E−08 | – | 5.644E−08 | – | 1.042E−07 | – |
200 | 6.849E−05 | 2.000 | −8.525E−09 | 3.993 | 2.620E−09 | 3.708 | 3.186E−09 | 4.147 | 4.683E−09 | 4.476 | |
400 | 1.712E−05 | 2.000 | −5.335E−10 | 3.998 | 1.718E−10 | 3.931 | 1.871E−10 | 4.090 | 2.341E−10 | 4.322 | |
800 | 4.281E−06 | 2.000 | −3.335E−11 | 4.000 | 1.087E−11 | 3.983 | 1.131E−11 | 4.049 | 1.278E−11 | 4.195 | |
1600 | 1.070E−06 | 2.000 | −2.085E−12 | 4.000 | 6.814E−13 | 3.996 | 6.944E−13 | 4.025 | 7.405E−13 | 4.109 | |
3200 | 2.675E−07 | 2.000 | −1.303E−13 | 4.000 | 4.262E−14 | 3.999 | 4.302E−14 | 4.013 | 4.446E−14 | 4.058 | |
6400 | 6.689E−08 | 2.000 | −8.144E−15 | 4.000 | 2.664E−15 | 4.000 | 2.677E−15 | 4.006 | 2.722E−15 | 4.030 | |
12800 | 1.672E−08 | 2.000 | −5.090E−16 | 4.000 | 1.665E−16 | 4.000 | 1.669E−16 | 4.003 | 1.683E−16 | 4.015 | |
α | Analytical values of ${I_{{0^{+}}}^{\alpha }}y(x){\big|_{x=2}}$ calculated using formula (67) | ||||||||||
0.4 | 3.6979129457596915301988815161146608 | ||||||||||
0.7 | 4.0856207593403175492511974048448624 | ||||||||||
1.4 | 4.3604818404289140653601695680338754 | ||||||||||
2.7 | 2.9484099812828967875285769194034989 |
Example 2.
(68)
\[ y(x)=\frac{\big(\sqrt{x}\sin (3{x^{2}})+\frac{5x}{x+2}\big)\cdot \exp \big(-\frac{{(x-2)^{3}}}{2}-\frac{2}{x}\big)+\frac{{x^{x}}}{8}}{{3^{x}}\sqrt{{x^{2}}+1}}\]Table 2
α | N | Linear spline | Quadratic spline | Cubic spline | |||||||
Variant 1 | Variant 2 | Variant 3 | |||||||||
${\Psi _{N}}$ | $\textit{EOC}$ | ${\Psi _{N}}$ | $\textit{EOC}$ | ${\Psi _{N}}$ | $\textit{EOC}$ | ${\Psi _{N}}$ | $\textit{EOC}$ | ${\Psi _{N}}$ | $\textit{EOC}$ | ||
0.4 | 100 | 0.129175293650077 | – | 0.129159283883400 | – | 0.129159149778395 | – | 0.129159260371743 | – | 0.129159333125011 | – |
200 | 0.129163284309064 | 1.973 | 0.129159195936989 | 4.003 | 0.129159190635184 | 6.329 | 0.129159191910429 | 5.277 | 0.129159192879209 | 5.720 | |
400 | 0.129160226303874 | 1.981 | 0.129159190452032 | 3.971 | 0.129159190127129 | 3.442 | 0.129159190145188 | 4.784 | 0.129159190219303 | 4.307 | |
800 | 0.129159451516164 | 1.986 | 0.129159190102355 | 3.920 | 0.129159190080380 | 4.132 | 0.129159190081100 | 4.259 | 0.129159190084947 | 4.261 | |
1600 | 0.129159255887306 | 1.989 | 0.129159190079257 | 3.864 | 0.129159190077714 | 4.094 | 0.129159190077754 | 4.111 | 0.129159190077939 | 4.243 | |
3200 | 0.129159206615184 | 1.992 | 0.129159190077671 | 3.803 | 0.129159190077558 | 4.033 | 0.129159190077560 | 4.071 | 0.129159190077569 | 4.216 | |
6400 | 0.129159194228093 | 1.994 | 0.129159190077557 | 3.738 | 0.129159190077548 | 4.004 | 0.129159190077549 | 4.052 | 0.129159190077549 | 4.188 | |
12800 | 0.129159191118241 | – | 0.129159190077549 | – | 0.129159190077548 | – | 0.129159190077548 | – | 0.129159190077548 | – | |
0.7 | 100 | 0.165128141318417 | – | 0.165103544764964 | – | 0.165103545293346 | – | 0.165103583875713 | – | 0.165103610220807 | – |
200 | 0.165109708612410 | 1.997 | 0.165103550450332 | 3.702 | 0.165103551597517 | 3.312 | 0.165103551927078 | 5.055 | 0.165103552154690 | 5.630 | |
400 | 0.165105091970249 | 1.998 | 0.165103550887115 | 3.870 | 0.165103550962706 | 3.948 | 0.165103550965874 | 4.443 | 0.165103550982253 | 4.292 | |
800 | 0.165103936437045 | 1.999 | 0.165103550916983 | 3.997 | 0.165103550921568 | 4.076 | 0.165103550921684 | 4.115 | 0.165103550922400 | 4.208 | |
1600 | 0.165103647338066 | 1.999 | 0.165103550918853 | 4.092 | 0.165103550919128 | 4.035 | 0.165103550919134 | 4.045 | 0.165103550919163 | 4.153 | |
3200 | 0.165103575029852 | 2.000 | 0.165103550918963 | 4.189 | 0.165103550918979 | 4.011 | 0.165103550918980 | 4.025 | 0.165103550918981 | 4.106 | |
6400 | 0.165103556947631 | 2.000 | 0.165103550918969 | 4.322 | 0.165103550918970 | 4.003 | 0.165103550918970 | 4.015 | 0.165103550918970 | 4.071 | |
12800 | 0.165103552426280 | – | 0.165103550918969 | – | 0.165103550918970 | – | 0.165103550918970 | – | 0.165103550918970 | – | |
1.4 | 100 | 0.261754500404957 | – | 0.261701311442012 | – | 0.261701464571557 | – | 0.261701448885203 | – | 0.261701442194459 | – |
200 | 0.261714688712354 | 2.001 | 0.261701418707993 | 4.009 | 0.261701427658470 | 4.410 | 0.261701427393735 | 3.863 | 0.261701427109875 | 3.649 | |
400 | 0.261704741164795 | 2.000 | 0.261701425371550 | 4.003 | 0.261701425921852 | 4.113 | 0.261701425916636 | 3.955 | 0.261701425907174 | 3.804 | |
800 | 0.261702254627535 | 2.000 | 0.261701425787252 | 4.001 | 0.261701425821510 | 4.028 | 0.261701425821390 | 3.980 | 0.261701425821085 | 3.907 | |
1600 | 0.261701633016401 | 2.000 | 0.261701425813219 | 4.000 | 0.261701425815358 | 4.007 | 0.261701425815355 | 3.990 | 0.261701425815345 | 3.954 | |
3200 | 0.261701477615193 | 2.000 | 0.261701425814842 | 4.000 | 0.261701425814975 | 4.002 | 0.261701425814975 | 3.995 | 0.261701425814975 | 3.977 | |
6400 | 0.261701438765002 | 2.000 | 0.261701425814943 | 4.000 | 0.261701425814951 | 4.000 | 0.261701425814951 | 3.998 | 0.261701425814951 | 3.989 | |
12800 | 0.261701429052462 | – | 0.261701425814949 | – | 0.261701425814950 | – | 0.261701425814950 | – | 0.261701425814950 | – | |
2.7 | 100 | 0.351816614974611 | – | 0.351709046915229 | – | 0.351709417655548 | – | 0.351709374905998 | – | 0.351709355473402 | – |
200 | 0.351736132977994 | 2.001 | 0.351709305553739 | 4.004 | 0.351709327145813 | 4.448 | 0.351709326481777 | 3.792 | 0.351709325779111 | 3.398 | |
400 | 0.351716024501843 | 2.000 | 0.351709321670694 | 4.001 | 0.351709322999350 | 4.115 | 0.351709322986643 | 3.945 | 0.351709322963108 | 3.786 | |
800 | 0.351710998133673 | 2.000 | 0.351709322677255 | 4.000 | 0.351709322760002 | 4.027 | 0.351709322759708 | 3.979 | 0.351709322758956 | 3.901 | |
1600 | 0.351709741588551 | 2.000 | 0.351709322740154 | 4.000 | 0.351709322745321 | 4.006 | 0.351709322745313 | 3.990 | 0.351709322745290 | 3.952 | |
3200 | 0.351709427455202 | 2.000 | 0.351709322744085 | 4.000 | 0.351709322744408 | 4.002 | 0.351709322744407 | 3.995 | 0.351709322744407 | 3.976 | |
6400 | 0.351709348922048 | 2.000 | 0.351709322744330 | 4.000 | 0.351709322744351 | 4.000 | 0.351709322744351 | 3.998 | 0.351709322744351 | 3.988 | |
12800 | 0.351709329288771 | – | 0.351709322744346 | – | 0.351709322744347 | – | 0.351709322744347 | – | 0.351709322744347 | – |
Example 3.
(70)
\[\begin{aligned}{}y(x)& ={(x-1)^{5}}-8{(x-1)^{4}}+17{(x-1)^{3}}+{(x-1)^{2}}-19(x-1)+10\\ {} & =-{(5-x)^{5}}+12{(5-x)^{4}}-49{(5-x)^{3}}+77{(5-x)^{2}}-37(5-x)+14,\end{aligned}\](71)
\[\begin{aligned}{}{^{R}}{I_{[1,5]}^{\alpha }}y(x){|_{x=g}}& =\frac{1}{2\cos (\alpha \pi /2)}\left(\frac{\Gamma (6)}{\Gamma (6+\alpha )}\big({(g-1)^{5+\alpha }}-{(5-g)^{5+\alpha }}\big)\right.\\ {} & \hspace{1em}+\frac{\Gamma (5)}{\Gamma (5+\alpha )}\big(-8{(g-1)^{4+\alpha }}+12{(5-g)^{4+\alpha }}\big)\\ {} & \hspace{1em}+\frac{\Gamma (4)}{\Gamma (4+\alpha )}\big(17{(g-1)^{3+\alpha }}-49{(5-g)^{3+\alpha }}\big)\\ {} & \hspace{1em}+\frac{\Gamma (3)}{\Gamma (3+\alpha )}\big({(g-1)^{2+\alpha }}+77{(5-g)^{2+\alpha }}\big)\\ {} & \hspace{1em}+\frac{\Gamma (2)}{\Gamma (2+\alpha )}\big(-19{(g-1)^{1+\alpha }}-37{(5-g)^{1+\alpha }}\big)\\ {} & \hspace{1em}+\left.\frac{\Gamma (1)}{\Gamma (1+\alpha )}\big(10{(g-1)^{\alpha }}+14{(5-g)^{\alpha }}\big)\right).\end{aligned}\]Table 3
α | N | Linear spline | Quadratic spline | Cubic spline | |||||||
Variant 1 | Variant 2 | Variant 3 | |||||||||
${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | EOC | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ||
0.25 | 100 | −2.957E−03 | – | −1.384E−06 | – | −1.318E−07 | – | −1.346E−07 | – | −1.421E−07 | – |
200 | −7.766E−04 | 1.929 | −1.581E−07 | 3.130 | −8.981E−09 | 3.876 | −9.055E−09 | 3.893 | −9.290E−09 | 3.935 | |
400 | −2.020E−04 | 1.943 | −9.973E−09 | 3.987 | −5.990E−10 | 3.906 | −6.012E−10 | 3.913 | −6.085E−10 | 3.932 | |
800 | −5.214E−05 | 1.954 | −6.280E−10 | 3.989 | −3.941E−11 | 3.926 | −3.947E−11 | 3.929 | −3.970E−11 | 3.938 | |
1600 | −1.338E−05 | 1.962 | −3.950E−11 | 3.991 | −2.566E−12 | 3.941 | −2.568E−12 | 3.942 | −2.575E−12 | 3.946 | |
3200 | −3.418E−06 | 1.969 | −2.482E−12 | 3.992 | −1.658E−13 | 3.952 | −1.658E−13 | 3.953 | −1.661E−13 | 3.955 | |
6400 | −8.698E−07 | 1.974 | −1.558E−13 | 3.994 | −1.065E−14 | 3.961 | −1.065E−14 | 3.961 | −1.065E−14 | 3.962 | |
12800 | −2.207E−07 | 1.979 | −9.774E−15 | 3.995 | −6.803E−16 | 3.968 | −6.803E−16 | 3.968 | −6.806E−16 | 3.969 | |
0.75 | 100 | −8.977E−03 | – | −3.265E−06 | – | 3.319E−07 | – | 3.356E−07 | – | 3.575E−07 | – |
200 | −2.251E−03 | 1.996 | −2.213E−07 | 3.883 | 2.050E−08 | 4.017 | 2.065E−08 | 4.022 | 2.134E−08 | 4.067 | |
400 | −5.637E−04 | 1.997 | −1.372E−08 | 4.011 | 1.275E−09 | 4.008 | 1.280E−09 | 4.012 | 1.301E−09 | 4.035 | |
800 | −1.411E−04 | 1.999 | −8.537E−10 | 4.007 | 7.945E−11 | 4.004 | 7.962E−11 | 4.007 | 8.029E−11 | 4.019 | |
1600 | −3.529E−05 | 1.999 | −5.321E−11 | 4.004 | 4.958E−12 | 4.002 | 4.963E−12 | 4.004 | 4.984E−12 | 4.010 | |
3200 | −8.825E−06 | 1.999 | −3.320E−12 | 4.002 | 3.096E−13 | 4.001 | 3.098E−13 | 4.002 | 3.104E−13 | 4.005 | |
6400 | −2.207E−06 | 2.000 | −2.073E−13 | 4.001 | 1.934E−14 | 4.001 | 1.935E−14 | 4.001 | 1.937E−14 | 4.003 | |
12800 | −5.518E−07 | 2.000 | −1.295E−14 | 4.001 | 1.208E−15 | 4.000 | 1.209E−15 | 4.001 | 1.209E−15 | 4.001 | |
1.25 | 100 | 1.125E−02 | – | 5.353E−06 | – | −1.499E−06 | – | −1.558E−06 | – | −1.765E−06 | – |
200 | 2.812E−03 | 2.000 | 3.320E−07 | 4.011 | −9.390E−08 | 3.997 | −9.569E−08 | 4.026 | −1.021E−07 | 4.111 | |
400 | 7.029E−04 | 2.000 | 2.077E−08 | 3.998 | −5.872E−09 | 3.999 | −5.927E−09 | 4.013 | −6.129E−09 | 4.059 | |
800 | 1.757E−04 | 2.000 | 1.299E−09 | 3.999 | −3.671E−10 | 4.000 | −3.688E−10 | 4.007 | −3.751E−10 | 4.030 | |
1600 | 4.393E−05 | 2.000 | 8.120E−11 | 4.000 | −2.294E−11 | 4.000 | −2.300E−11 | 4.003 | −2.319E−11 | 4.015 | |
3200 | 1.098E−05 | 2.000 | 5.075E−12 | 4.000 | −1.434E−12 | 4.000 | −1.436E−12 | 4.002 | −1.442E−12 | 4.008 | |
6400 | 2.746E−06 | 2.000 | 3.172E−13 | 4.000 | −8.962E−14 | 4.000 | −8.967E−14 | 4.001 | −8.986E−14 | 4.004 | |
12800 | 6.864E−07 | 2.000 | 1.983E−14 | 4.000 | −5.601E−15 | 4.000 | −5.603E−15 | 4.000 | −5.609E−15 | 4.002 | |
1.75 | 100 | 6.695E−03 | – | 5.745E−06 | – | −1.102E−06 | – | −1.164E−06 | – | −1.373E−06 | – |
200 | 1.674E−03 | 2.000 | 3.587E−07 | 4.001 | −6.914E−08 | 3.994 | −7.099E−08 | 4.035 | −7.753E−08 | 4.146 | |
400 | 4.185E−04 | 2.000 | 2.242E−08 | 4.000 | −4.326E−09 | 3.999 | −4.382E−09 | 4.018 | −4.586E−09 | 4.079 | |
800 | 1.046E−04 | 2.000 | 1.401E−09 | 4.000 | −2.704E−10 | 4.000 | −2.722E−10 | 4.009 | −2.786E−10 | 4.041 | |
1600 | 2.616E−05 | 2.000 | 8.759E−11 | 4.000 | −1.690E−11 | 4.000 | −1.696E−11 | 4.005 | −1.716E−11 | 4.021 | |
3200 | 6.540E−06 | 2.000 | 5.474E−12 | 4.000 | −1.056E−12 | 4.000 | −1.058E−12 | 4.002 | −1.064E−12 | 4.011 | |
6400 | 1.635E−06 | 2.000 | 3.422E−13 | 4.000 | −6.603E−14 | 4.000 | −6.608E−14 | 4.001 | −6.628E−14 | 4.005 | |
12800 | 4.087E−07 | 2.000 | 2.138E−14 | 4.000 | −4.127E−15 | 4.000 | −4.128E−15 | 4.001 | −4.134E−15 | 4.003 | |
α | Analytical values of ${^{R}}{I_{[1,5]}^{\alpha }}y(x){|_{x=2}}$ calculated using formula (70) | ||||||||||
0.25 | 6.9563532456344804165421264614628538 | ||||||||||
0.75 | 42.4546893190059613381179849166915634 | ||||||||||
1.25 | −64.6142429211655969966421680694892918 | ||||||||||
1.75 | −32.5941704287460581059377804482796869 |
Fig. 1
Example 4.
(72)
\[\begin{aligned}{}{I_{{a^{+}}}^{\alpha }}y(x)& \simeq \frac{1}{\Gamma (\alpha )}\Bigg({(\Delta x)^{\alpha }}{\sum \limits_{k=1}^{N-1}}\frac{y(x-k\Delta x)}{{k^{1-\alpha }}}+\frac{y(a)}{2{(x-a)^{1-\alpha }}}\Delta x\\ {} & \hspace{1em}-\frac{(\alpha -1){(x-a)^{\alpha -2}}y(a)-{(x-a)^{\alpha -1}}{y^{\prime }}(a)}{12}{(\Delta x)^{2}}\\ {} & \hspace{1em}-\zeta (1-\alpha )y(x){(\Delta x)^{\alpha }}+\zeta (-\alpha ){y^{\prime }}(x){(\Delta x)^{\alpha +1}}\\ {} & \hspace{1em}-\zeta (-1-\alpha )\frac{{y^{\prime\prime }}(x)}{2}{(\Delta x)^{\alpha +2}}+\zeta (-2-\alpha )\frac{{y^{\prime\prime\prime }}(x)}{6}{(\Delta x)^{\alpha +3}}\Bigg)\\ {} & \hspace{1em}+\mathrm{O}\big({(\Delta x)^{4}}\big),\end{aligned}\](73)
\[ {I_{{a^{+}}}^{\alpha }}\exp (\lambda x)=\exp (\lambda a){(x-a)^{\alpha }}{E_{1,1+\alpha }}\big(\lambda (x-a)\big),\]Table 4
N | $\Delta x$ | Dimitrov’s method | Cubic spline | ||||||
Variant 1 | Variant 2 | Variant 3 | |||||||
${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ${\textit{err}_{N}}$ | $\textit{EOC}$ | ||
40 | 0.05 | no data | – | 4.87E−08 | – | 7.98E−08 | – | 1.66E−07 | – |
80 | 0.025 | 1.06E−09 | 4.04725 | 3.46E−09 | 3.81833 | 4.66E−09 | 4.09663 | 8.45E−09 | 4.29274 |
160 | 0.0125 | 6.48E−11 | 4.03414 | 2.27E−10 | 3.92785 | 2.76E−10 | 4.07693 | 4.44E−10 | 4.25181 |
320 | 0.00625 | 3.98E−12 | 4.02694 | 1.45E−11 | 3.96779 | 1.66E−11 | 4.05782 | 2.40E−11 | 4.20937 |
640 | 0.003125 | 2.34E−13 | 4.08360 | 9.17E−13 | 3.98378 | 1.01E−12 | 4.04244 | 1.33E−12 | 4.16883 |
Analytical value of ${I_{{0^{+}}}^{0.5}}\exp (x){|_{x=2}}=7.052852096484309014376129$ (calculated using (73)) |