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Abstract. In this paper, the numerical algorithms for calculating the values of the left- and right-
sided Riemann-Liouville fractional integrals and the Riesz fractional integral using spline inter-
polation techniques are derived. The linear, quadratic and three variants of cubic splines are taken
into account. The estimation of errors using analytical methods are derived. We show four examples
of numerical evaluation of the mentioned fractional integrals and determine the experimental rate
of convergence for each derived algorithm. The high-precision calculations are executed using the
128-bit floating-point numbers and arithmetic routines.
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1. Introduction

The fractional calculus (e.g. Kilbas et al., 2006; Podlubny, 1999; Rubin, 1996) is treated as
a branch of mathematical analysis dealing with differential-integral equations, in which
the integrals are of the convolutional type and have power-type kernels. The fractional
calculus refers to the fractional integration and fractional differentiation. It can be seen
in the extensive literature in the past few decades that the fractional calculus has received
increasing attention for its applications in science and engineering — it is difficult to list
examples of literature without omitting even the most important ones. This work mainly
deals with the development and investigation of numerical methods for the fractional in-
tegrals.

We recall the following definitions of the Riemann-Liouville fractional integrals. The
left-sided fractional integral of order o > 0 of the given function y(x) on the interval
[a, b] is defined as follows (Kilbas et al., 2006; de Oliveira and Machado, 2014)

o Ly
I y(x) = r@ /; o _é)l_adé, for x > a, (1)
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where I' denotes the Gamma function. Whereas, the right-sided fractional integral is of
the form

« I
L y(x) = F@) /x 7 _x)l_adé, forx < b. 2)

The Riesz fractional integral (known also as the Riesz potential), in general, is defined in
the infinite n-dimensional domain (Rubin, 1996; Kilbas et al., 2006). Here, we limit our
considerations to its one-dimensional definition in the finite interval of the real axis, and
then it can be regarded as the linear combination of the left- and right-sided Riemann—
Liouville integrals. The Riesz fractional integral of order « > 0, & # 1,3,5, ... of the
function y(x) on the finite interval [a, b] is defined as (see: Kilbas et al., 2006)

1 /b y(&)
2 (a) cos(am/2) J, & — x|

RIE y(x) = dt

= m(lg+y(x)+lg‘,y(x)), fora < x <b. 3)

The above fractional integral operators play an important role in the fractional calculus,
especially to transform fractional differential equations into fractional integral equations.
Therefore, among others, it is necessary to develop appropriate numerical methods for
approximate evaluation of these fractional integrals. In view of the numerous applications
of the fractional integral operators, there is great demand for efficient and accurate algo-
rithms for their numerical calculations, especially for the integrand functions that have
complicated forms or the explicit analytical forms of the fractional integrals that are so far
unknown. Generally, different ways of discretization of the integrand function yield a se-
ries of quadrature formulas, whereas different formulas of coefficients in these quadratures
give different accuracies. Numerical approximations of the fractional integrals are most
often based on polynomial interpolation from which numerical schemes can be derived
with a specified accuracy. Among the pioneering works in this field, the book by Oldham
and Spanier (1974) can be distinguished. The reviews of different numerical methods (so
far known) for fractional integrals and derivatives can be found in Cai and Li (2020),
Li and Zeng (2015), Almeida et al. (2015), Blaszczyk and Siedlecki (2014), Baleanu et
al. (2012), Malinowska et al. (2015), Blaszczyk et al. (2018), Odibat (2006), Dimitrov
(2021), Budak et al. (2023). Due to the wide applications of fractional calculus, it is be-
coming increasingly important to develop numerical algorithms with high accuracy, fast
convergence and less storage memory.

In this work, we focused primarily on the study of numerical algorithms for approx-
imation of fractional integrals (1)—(3) by applying several interpolation methods for the
integrand function using different kinds of splines. Next, we derived and presented gen-
eral numerical integration schemes for the left and right-sided Riemann—Liouville and the
Riesz fractional integrals. For each numerical scheme, we estimated the computational er-
ror using analytical methods. We tested the quality of the obtained numerical algorithms
on three examples by examining numerical errors and determining the experimental order
of convergence.
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2. Numerical Algorithms

The integrand function y(x) given in Egs. (1)—(3) should be defined on interval [a, b] and
sufficiently smooth. In the proposed approach, function y(x) is replaced by same interpo-
lation formulas, e.g. an interpolation polynomial of arbitrary degree or an interpolation
spline, as

y(x) = 5(x). 4)

Often instead of using high-degree polynomials, one can apply the spline curves (Press et
al., 2007; Engeln-Miillges and Uhlig, 1996). The advantage of such an approach is that
the spline curves are at most third degree polynomials and hence the oscillations between
interpolation points are characterized by smaller amplitude and, after all, the splines are
only piecewise continuous.

2.1. Spline Interpolations

The spline is a set of piecewise polynomials linked in the set of points. Let us assume that
the interval [a, b] is divided into N sub-intervals [x;, x;41], fori =0, 1,..., N — 1, with
the constant step length Ax = (b — a)/N. The coordinates of N + 1 nodal points are the
following: a = xo < x1 < --- < xy = b, x; = a + i Ax. At the given set of points, the
values of function y(x) are determined as y; = y(x;), fori =0, 1,..., N. The piecewise
function s(x) can be expressed as

so(x), if x € [xg, x1],
$(x) = s1(x), if x € [x1, x2], )

sy—1(x), ifx e[xy_1,xn],

where s;(x) are polynomials of degree p in each sub-interval [x;, x;41], for i =

0,1,..., N — 1, and here we write these polynomials in the form
p
si) =Y exilx —xp)k, (6)
k=0
where ¢ ;,fork =0, 1, ..., p, are the coefficients of polynomial s; (x) in i-th sub-interval

[xi, xi+1]. The way of determination of these coefficients depends on the kind of spline
interpolation used. Additionally, the important feature of the spline s(x) that interpolates
the set of the data points (xg, yo), (x1, ¥1), ..., (xn, yn) is the relationship s(x;) = y;,
fori =0,1,...,N.

2.1.1. Linear Spline Interpolation
The linear interpolation is the simplest form of interpolation where the set of the data
points is approximated by a piecewise linear function (the first degree polynomial), which
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means that the adjacent data points (x;, y;) and (x;j4+1, yi+1), fori = 0,1,...,N — 1,
wherein N > 2, are connected by straight lines. The polynomial of first degree (p = 1)
in i-th sub-interval is constructed as

si(x) =co,i +c1,i(x — x;). @)

The linear Lagrange interpolating polynomial in the interval x € [x;, x;41], for i =

0,1,..., N — 1, that passes through the points (x;, y;) and (x;+1, yi+1) results from the
relation
X — Xit1 X — X; v'(X;)
V) = Sy () + —————y (i) + T (8 = ) (= Xi)
Xi — Xi41 X+l — X 2!
Yitl = i Y (%)
= ¥+ T (=) T (6 = XD = X))
AXx 2
= s;(x) + Errl; (x), 8)

and hence, the polynomial coefficients in Eq. (7) are as follows

Yi+l — Vi
coi =Yi, Cli= IA—xl )
Moreover, the error term in i-th interval is given as
e
Y (xi)
Errli(x) = ==& = x)(x = xi41), (10)

where X; € [x;, x;+1] is a certain point in the interval. The error term involves y”, so the
linear spline gives the exact result for any function y(x), where the second derivative is
equal to zero. In literature, this approach used for integration is known as the trapezoidal
rule (Press et al., 2007).

2.1.2. Quadratic Spline Interpolation
In this kind of approximation, the second degree polynomial (p = 2) in each i-th sub-
interval is used

5i(x) = coi +c1i(x —xi) + 2 (x — x)7, (11)

where x € [x;, xj4+1],fori =0,1,..., N—1,and N > 2 must also be even. To determine
the coefficients of parabola (quadratic segment), three data points are needed, and hence
each parabola spans two sub-intervals.

Here, we suppose that function y(x) in the considered double interval [x;_1, x;41], for
i=1,3,..., N—1,is expanded in the Taylor polynomial of third order about the central
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point x; as
Y@ = )+ )@ =)+ P 4 T e ?
@ (%.
0 ™

where X1; € [x;_1, x;+1] is a certain point in the interval. The values of y’(x;) and y” (x;)
in Eq. (12) are replaced by well-known relationships

/ 1 (Ax)z "=
y(xi) = K(y(xi—t-l) — y(xi1) — ——y"" (%2).
X 6
5 (13)
”(x-)—#( (xi+1) — 2y (xi) + y(xi ))—ﬂ @ (&30
y X _(Ax)2 YXi+1 y{Xi YXi—1 12 y 3i)s
where Xo; € [x;_1, xij+1] and x3; € [x;_1, Xi+1], and hence it was obtained
(i) —yim) (A,
yx) = y(x;) + < P Ax 6 y (XZI))(X Xi)
1 (y@ie) =2y0) +yi-D)  (AD” @ o
+ 2!< - 2y (xg,)>(x %)
"y @ (5.
#2302 (14)
or written in the form
y(x) =si(x) + Err2;(x), forx € [xj_1, xit+1], (15)
where
o Vit Tyiet o Vil =2y e, )
si(x) =y + P Ax (x —x;) + 2(Ar)? (x —x;) (16)
and
1 " 3 (Ax)z "=
Err2;(x) = 2 (xi)(x —x;)” — 5 (X2i) (x — x;)
1 Ax)?
@ @ne -t — SO @) -
1
= (- x)? = (A2 (x — x)y" (&)
1
55 (0 =) = (A0 = x)?)y D), (17)

wherein X; € [x;_1, xj+1] is taking into account as common values of x;, X1;, X2; and x3;.
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In order to maintain a uniform form of the spline notation (as in Eq. (11)), two cases
are considered

Ek i, fori even,
Cri=1{_ fork=0,1,2. (18)
Ck,i, fori odd,
Ifiisodd (i.e.i = 1,3,..., N — 1), then the coefficients ¢ ; can be taken directly
from Eq. (16) as
G = v G — Yi+l — Yi—1 & — Vi1 — 2¥i + Yig1 (19)
0,i Yis 1,i YAx s 2,i 2(Ax)2 s

and then the relationships s; (x;—1) = yi—1, ;i (x;) = yi, i (xj4+1) = yi+1 occur.

Ifiiseven(i.e.i = 0,2, ..., N —2), then the coeflicients 5;{,,- are calculated from the
transformation of Eq. (16) by substitution i <— i + 1 on the right side of equation, and
hence they have the following forms

S— = _ T30 AYi4 — Vio = Vi~ 2yip1+yig
€o,i = Vi, Cl,i = PAx s i = Z(Ax)z

, (20

and the properties s; (x;) = yi, 8 (Xi+1) = Yit+1, 8i (Xi+2) = yi42 hold.

As can be seen in the first case, the quadratic segment is defined in the interval
[xi, xi42] (for i even), while in the second case it is defined in the interval [x;_1, x;41]
(for i odd), but in fact, both quadratic segments are identical in two adjacent sub-intervals.
This approach will simplify the notations of numerical integration later in the work.

2.1.3. Cubic Spline Interpolation

The cubic splines produce a curve that appears to be seamless and has smooth character-
istics. A piecewise continuous curve passes through each of the data points (x;, y;), for
i=0,1,..., N, wherein N > 4, in the given order and the separate polynomial of third
degree (p = 3) (so-called the cubic polynomial segment) in each sub-interval has its own
set of coeflicients, i.e.

5i(x) = coi +c1i(x — x;) +eai(x —xi)? Fc3i(x — x;), (21)

where x € [x;, x;41], fori =0,1,..., N — 1. These four coefficients cg ;, c1;, ¢2,; and
c3,; for i-th polynomial, in each of the N sub-intervals should be determined, and hence,
in order to define the whole spline, a total of 4N independent dependencies imposed on
the spline are required.

In the case of this kind of spline, the following assumptions are made (Burden et al.,
2016):

— the polynomials match the data points at both ends of each i-th sub-interval: s; (x;) = y;,
§i(Xi+1) = yig1,fori =0,1,..., N — 1, (two conditions for each sub-interval give
2N dependencies in total).
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— the spline interpolation must be smooth, therefore the following requirements are as-
sumed for the first and second derivatives of the spline (which means that the slope
and the curvature must be equal for each pair of neighbouring polynomials that join at
each data point): s_,(x;) = s/(x;), s/, (x;) = s/ (x;), fori =1,2,...,N — 1, (two
conditions for each internal node give further 2N — 2 dependencies).

— the missing two additional conditions should be determined on the basis of the assumed
integer order derivatives of the function y(x) in the boundary nodes xo and xx (collo-
quially called the end point conditions). Three variants of the cubic spline constructions
are considered:

e variant 1: 5)(xo) = Y, sj_,(xn) = Yy,

e variant 2: 57 (xo) = Yy, sy_, (xn) = Yy,

e variant 3: 5" (xo) = Yy, sy/_ (xn) = Y/,

where Y[, Y, Yy", Yy, Yy and Y/ correspond to the values of the first, second and third
order derivatives of the function y(x) at the nodes xo and x, respectively. In principle,

any combination of derivative orders at both boundary nodes can be considered (e.g.

sy (xo) and sy _; (xn)).

To determine the coefficients in Eq. (21), we used substitutions (see: Burden et al.,
2016) in order to reduce the number of coeflicients to be determined

€0,i = Yis
Yiel = Vi Ax
cli=———— —(c2it1 +2c21), (22)
Ax 3
1
€3, = E(Q,iﬂ —c2i),

and hence, the cubic spline in the i-th sub-interval (Eq. (21)) can be written in the form

Yiel —Yi  Ax
si(x) =y + (hLA—xl - T(CZ,H—I + 262,1‘)) (x — x;) + 2. (x — x;)?
1
+ s @i — )k - xi)?. (23)

It can now be seen that only N + 1 unknown coefficients c; ; need to be determined
(the last one with the index N is used to evaluate ¢; y—1 and c3, y—1). The first, second
and third derivatives of the spline s; (x) are as follows

Yiel —Vi  Ax
si(x) = (% - T(Cz,iﬂ + 2Cz,i)) +2c¢2,i(x — xi)

1
+ —(c2it1 — c2,)(x — )7,
Ax (24)

2
si(x) =2¢2,; + E(cz’i“ —c2,)(x — xp),

2
si'(x) = E(Cz,i+1 —C2,i)-
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It is easy to check that the conditions: s;(x;) = i, si(xj41) = Yiy1, fori =
0,1,....,N —1,and s, (x;) = s/(x;), fori = 1,2,..., N — 1, are always present.
While, from the conditions s/, (x;) = s;(x;), fori = 1,2,..., N — 1, as a result, the
following dependencies are obtained

Yitl —2yi +yi-1
(Ax)?

c2it1 +4c2i+c2i-1=3 , fori=1,2,...,N—1. (25)

To complete the system of N + 1 linear equations, two dependencies resulting from
the end point conditions should be added. If the points x¢ and xy are inserted into the
appropriate spline derivatives, then we get

Y1 =0
Ax
50 (X0) = 2¢2,0,

, Ax
so(x0) = - T(Cz,l +2¢2,0),

2
5o (x0) = A_(CZ,I —€2,0),
* (26)
YN — YN-1

Ax
Sy_1(xn) =2con,

, Ax
sSy_1(xn) = + T(Q,N—l +2c2,N),

sy_1(xn) = i(C2N —C2,N-1)
N-1 Ax 2 N-1)-
Hence, depending on the assumed variant of the cubic spline construction, the missing

end point conditions can be determined in the forms

i yi—y Yo
e variant 1: 2c20 4+ ¢2,1 = 3< — _)’
(Ax)?  Ax
Y'v YN —YN-1
o N-1+20N= 3(— — 22 SR,
Ax (Ax)?
i ! " 1 Vi
e variant 2: ¢z 0 = EYO’ N = EYN’
i 3. — Ax Yy _ Ax v
e variant -02,0—02,1——7 0 _02,N—1+C2,N—7 v,

The above derived relationships create the linear system of equations that can be writ-
ten in matrix form

v.0 i1 0 0 0 0 0 €2.0 do
1 4 10 0 0 0 21 di
0 1 41 0 0 0 2 dy
0 0 1 4 0 0 0 2,3 d3
= 7 |. @
0 0 00 4 1 0 N2 dn—2
0 0 00 1 4 1 C2,N—1 dn-1
L0 0 00 0 ywwy—1r vl L anv | L dv |
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where

P Y .
dp =3I T I BN oy 0 N -1
(Ax)

and

. -y Y
e for variant 1: yp0 =2, 0.1 =1, d()=3< ——),
Y Y (Ax)2 Ax

Y; S
YNN-1=1, YNN =2, dN=3( N_M)

Ax (Ax)?
e forvariant2: yoo =1, 0.1 =0, do= 5 7,
yNN—-1=0, yyn=1 dn= EY’/\/”
f iant 3: 1 1 do— Ax _
e for variant 3: yp0 = 1, yo0,1 = —1, 0__7 0
Ax
YyNN—1=—1, ywnn=1 dn= -5 N

29

(28)

The values of Y, Yy, Y/, Y, Yy, and Y}/ can be determined directly if the first, second
and third order derivatives of function y(x) can be derived analytically, i.e. Y = y'(x),
Yy = y'(xn) and so on. Otherwise, we propose to determine the numerical values for
them using the forward/backward finite difference schemes of fourth order accuracy (with

the uniform grid spacing) in the forms (Fornberg, 1988)

L1 [ 25 4 1
Yo=—|—75Yo+4y1 =32+ 3y3— =4 ),

Ax 12 3 4
y;i(é —4dyn_1+3 __i __{_l _)
N = A 12)’N YN-1 YN-2 3)’N 3 4)’1\/ 4],
Y”g; E _ﬂ +£ —13 +g _§
0 (Ax)? 4y0 6)’1 6 Y2 y3 12Y4 6)’5 )

77 107 61 5

1 15
Yy = <_)’N — —¥N-1+—IyN2—13yN 3+ ZI¥N-4— —IN-5

N= a2\ 4 6 6 12 6

o1 49 461 307 15
Yy = ——y0+ 29y, — 7y2+62y3— ?y4+13y5—§y6 ,

(A \ 8

Y 1 <49 29 + 461 & n 307
N = (Ax)? \ 8 YN YN-1 3 YN-2 YN-3 3 YN-4

15
—13yn—s5 + g N6 -

(29)

)

(30)

€1y

By solving the system of equations (27), we obtain the values of polynomial coeffi-
cients ¢z, fori = 0,1,..., N, in Eq. (21), while the values of remaining coefficients
€0,i> Cl,i>¢3,i,fori =0,1,..., N —1, can then be directly calculated from relations (23).
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Remarks to the cubic splines regarding the global approximation: in order to determine
the polynomial coefficients ¢ ; in Eq. (21), the value of the interpolation function s(x)
at an arbitrary point x depends on all data points (x;, y;), fori =0, 1, ..., N. Here, the
variation or perturbation of one arbitrary data point (x;, y;) affects the construction of the
whole spline function s(x).

In numerous literature on the spline interpolation, it can be read that if the exact values
of the first derivative of function y(x) in both boundary nodes are known, then one can
build the spline with exact boundary conditions (colloquially called a ‘clamped spline’) —
this corresponds to variant 1. Here, we want to extend this nomenclature to the remain-
ing considered variants. Whereas, if the values of the derivatives of function y(x) in the
boundary nodes x( and xy are unknown, then one can set the so-called natural boundary
conditions (i.e. the second derivatives in these nodes take values equal to 0) — colloquially
called a ‘natural spline’. The natural spline is generally characterized by higher approxi-
mation errors than the clamped spline, and for this reason, it was omitted in this work.

Based on the theorem (e.g. Burden et al., 2016), the interpolation error for the clamped
cubic spline can be determined. If y(x) € C*[a, b] and s(x) is the clamped cubic spline
that interpolates function y(x) with respect to the nodes x;, fori =0, 1, ..., N, then the
following relationship occurs for all x € [a, b]

5
Err3 = - <= @ lax)*. 32
3 = |y(x) — s(x)| 384a21)?éb|y ()| (Ax) (32)

2.2. Numerical Integration

According to the previously adopted assumptions, we propose an approach to determine
the approximate values of the left- and right-sided fractional integrals (1)—(2) of function
y(x) in the set of data points x = g € {xy}, xyy =a + M Ax, where M =1, ..., N for
integral (1),and M =0, ..., N — 1 for integral (2), respectively, using the spline function
s(x) in the following ways

) B s(&)
Ia+s(x)|x:g=XM - I'a) f (g — E)lia

12

I;+y(x)|x=g

- /-x,+1 5i(§) — 2 g, forM =1 N (33)
= I"(a) oy - T
) . s(§)
Ib_y(x)|x=g Ib—s(x)|x=g=XM ) /g (& —g)liads
N

1 Xi+1 .
- / S e forM =0, N—1. (34
F(Ot) ¢

_ xM)l—Ol

The fractional integrals containing the spline function s(x) are the sum of the local inte-
grals.
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If we use the notation: x; = a + i Ax, then the general form of (6) is of the form

P
si0) =Y erifx — (@+iAx) (35)

k=0
and if we put Eq. (35) into Eq. (33), then we obtain

M

) aHEDAY S (& — (a + i Ax))F
Ia+s(x)| _. = -
X=Xy

-1 |
0 F( ) a+iAx (Cl‘i‘MAx_%-)l_a

=

d§

S

— & at+DAY (g _ Ak
=Y Y ( € - (a +iAn) dé) 6
i=0 k=0 (@) Jatinx (@a+ MAx — &)@
or in the form
M—-1 p
5| _, = ch’iJi,LI{j’ -
i=0 k=0
where the particular integrals Jl-’L,i,f ,fork =0,1,...,3, with regard to the data point xs

in i-th sub-interval (i < M), one can find in an analytical way, and they are as follows:

Lk 1 a+({i+1)Ax (s _ (a 4 le))k

) fo d
M (@) Jariag (a+MAx —§)!—« s
g=at(+iAx (Ax)*TF /1 uk "
B T Jo M—i—uw!-«
= M(k'(M — itk — gl —i - 1)), (38)
Ta+k+1)"
where
1, ifk =0,
M—-i—-1D+(+1), ifk=1,

abk_ oM —i— 1242 +2)(M —i— D+ (@ + D(@+2), ifk =2,
6(M —i—1)2+6(a+3)(M—i—1)>

+3@+D@+3)M—i—1)+ @+ D@+2)(@+3), ifk=3.
(39)
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In a similar manner, we proceed with the second integral (34) and we have

N-1 a+(i+1)Ax p (s _ i Ax))K
ool =3 / hoocei —@+idnf
= =M [(@) a+iAx ¢ —(a+MAx))
N—IXP:C < a+(i+1)Ax & —(a +iAx))k ds) i~
= k,
ST @ Joiae @ =@+ MAD))
or
N—-1 p
s, = > ey 1)
i=M k=0
and the integrals ij,f ,fork = 0,1,...,3, also with respect to data point x»; in i-th
sub-interval (i > M), take the following analytical forms
gRE_ L OO (@ — @t inx)t
MUT@) Jariae  (E = (a+ MAx)T®
g=a+(uti)Ax (Ax)FTY /1 uk ”
L@ Jo (—M+u'
(Ax)a—i-k ftl
= ——— (=DM — M)t dNE G — M+ 1)), 42
Wa+k+D« ) @ —M) +,M0 +1)%) (42)
where
1, ifk =0,
—(—M+1)+(@@+1), ifk=1,
dfiy =126 -M+ 12 2@+ —M+ D+ @+2@+1), ifk=2,

—6(i — M + 1) +6(a +3)(i — M + 1)?
—Bla+2)(a+3)i —M+1D)+(ax+3)(a+2)(a+1),

if k = 3.

(43)

Using the above numerical integration schemes, one can derive the numerical algo-
rithm for the Riesz fractional integral (3) in the following way

R
I ;Y O,

__ 4 e |
= 2COS((M/z)( 17 y(x) I y()l,_,)

1
SY—T

2 cos(am/2) + Ilf‘,s(x)|

x=g=xpy X=g=XM)
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1 M-1 p N—1 p
= m(Z denidiig + ) ch,iJifJ>

i=0 k=0 i=M k=0

N—-1 p Lk g
, ifi=0,...,M—1,
Chi Y (44)
0 J:

Zcos(om/Z) R.k ifi=M,...,N—1,

i=0 k= iM>

forM=1,...,N —1.
2.3. Error Estimate for the Composite Scheme of Integration

To determine the global error of fractional integration, we use the previously determined
interpolation errors on the individual intervals for each kind of spline, which should be
integrated and summed. Here, we limit to the estimation of errors for the left-sided frac-
tional Riemann—Liouville integral, but for the remaining integral operators, the results
will be analogous. Additionally, to simplify calculations, the whole (largest) integration
interval [a, D] (i.e. assuming M = N) is taken into account.

2.3.1. The Case of the Linear Spline
Taking the particular error terms Errl; (10), fori =0,1,..., N — 1, we integrate them
over each interval separately using the properties of integral calculus

N—

1 Xitl .
Err_ / + Errl;(§) g
F(a) (xy — &)

X+l 1

"= 1
- Z F(a)f 36 W06 — x4 ) e

YA (& —x;)(E — xi41)
G| Z = )/ e

,,,,,

- % M 6 (o, Ax), (45)
where
M, = o T |y (%)
6 (o, Ax) = N ) r(a) / 5 xl)(gsfx‘imds (46)
N-1 24a  pl _
§=xituAx Z (Arx(L) /0 5 L:(L;_ ;;1—“ du.

i=0
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After analytical integration and simplifications we obtain

34a
6 (a, Ax):(Ax)2+°‘<— 2N ( Z j 1+ N1+“>). (47)
rG+a) F(2 +a)

We approximate the finite sum ZlNzl i1 by using the Euler-Maclaurin formula of the
second order. Then we get

N — 2+a ; o
0, (o, Ax) = (Ax) <C2(a) + 6T +a)N ) (48)
where
2 1 1
Cr(a) = — + - . 49)

F'G+a) TI'C+a) 6I'0+a)

It can be noticed that for « = 1, we have C>(1) = 0, 95\[(1, Ax) = (Ax)>N/6 and
we obtain compliance with the classical trapezoidal rule of integration. By substituting
Eq. (48) into Eq. (45) and taking into account N = (b — a)/Ax, the final estimation of
the composed error is as follows

1 24« ! b-a )
Err < gMo| (AT G@ + emq | Tax

Can(CD e, =0
_Mz( 2 (A 12r(1+a)(Ax))
(b—a)*

_ 2 2+a
= M212 Ta +a)(Ax) + O((Ax)™*). (50)

\S)

2.3.2. The Case of the Quadratic Spline
Here, the error terms Err2; (17), fori = 1,3,..., N — 1, were determined on double
adjacent intervals, hence their fractional integration concerns double intervals

Err— /’“’“ Err2;(§) _Er%®
F(a)

1—
l13 ()CN_) T«

Z F(a)

i=1,3,...,N—1

1
+ﬁ(<s —x)t = (A0 E —x)?)y@ (m)

Xit1

( (€ —x)” = (AX)* (€ —x)y" (&)

Xi—]
1

—d
(xy — &)1 :
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1

S 5i=13 ..... \y (x»|
Xi _ 3 206 1.
% / (& —xi) (Axl) (& x,)dE
1=13 (@) (xy — &)
1
* 24 o151 |y(4)(xl)’
/ (& —x;)" — (Ax)%(& —x,)z
% 11—« é
i=1,3,. Nlr(a) (xnv —8)
:é 3 93 (o, Ax) + 4M4 94 (o, Ax), 51)
where
My=  max '@ Me= max oy (52)
Xi _ 3 _ N
0N (@, Ax) = / HE—x) (Axl) (€ —x)
i=13,... N | D) (xy — &) 7
E:xi;—qu Z (Ax)3+°‘ /1 I/t3 —u du
i=1,3,...,N—1 P JaaoW—i-whe
(53)
Xi+1 _ 4 _ 2
6) (@, Ax) = / HE—x) (sz € —x)?
i=13,... N RAC) (xy — &) 7
$=Xi;‘”AX Z (AX)4+(X /1 Lt4 — M2 du
i=13,..N—1 F@ JaW—i-w'

Further transformations (including using analytic integration and changing the index-

ing order in the series) lead to

0% (o, Ax)
3 N/2 1
— (Ax)3+ot 6N T _ 6 (23+a Zi2+a _ N2+a) + 2N e
Nr'd+a) TI'G+aw) = r2+aw
6N (a, Ax)
4 N/2
— (Ax)4+ot< 24N*He _ 24 (24+a Z i3+ot _ N3+a>
'S+a) T'd+oa) P

N/2

2
+ 10N to _ 2 <22+O(Zil+(x _ Nl+a>).
'G4+a) TI'C+aw P

(54)
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Next, to estimate the finite sums of the series, here the Euler-Maclaurin formula of the
fourth order is used, and finally we have

03 (o, Ax) = (Ax)* ™ (Ca(a) + 13 i(a) N‘H),

2 2( 1) (55)
GN , A >~ (A 44o C _ NCY o — NO{*Z ,
4 (@, Ax) = (Ax) < O Srer ™ e
where
3. 24+a 3. 23+0t 22+(x oa
C =— — — ,
) = iTe Tete Terw  13T@
6(2 25+« 5.23+« 22+ o1+«
Ca(ey = — 22 - + (56)
Ir'és+ow 'GB+a) T'QC+a) 15T(+a)
(¢ — 1)2¢
90 I'(ew)

It should be pointed out that for « = 1, one obtains C3(1) = —2/15, C4(1) = 0 and
hence 93N(1, Ax) =0, in(l, Ax) = —2(Ax)°N/15 — which corresponds to the classic
Simpson’s rule approximation for integral. By substituting 93N (o, Ax) and in (o, Ax)
from Eq. (55) into Eq. (51) and also assuming that N = (b — a)/Ax one gets

1 2(b —a)*!
Err < 8M3 <C3(0l)(AX)3+a + %(Axﬁ)

1 e 20b—a)" A
+ ﬂle <C4(Ol)(AX) - m(Ax)

_ a2
L2 -Db-a) (Ax)6>.

45 I' (o) 7)

Taking into account the terms containing Ax with the lowest powers, we have

C36(a) (Ax)*te + O((Ax)4), fora <1,

Err = (M G-t k-

Ms3

3 I5T 4 )( x)*
(@) 180 I'(x + 1) fora > 1.
+O((A)C)3+a),

(58)

2.3.3. The Case of the Cubic Spline
For this case, we estimate the global error without considering the summation of local
errors in each interval. Using the known properties of the classical calculus and the frac-
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tional integration of the constant, we obtain

Err= | 5y @) o = Les @]y = [ 1500 = s@)] |
< Iy —S(X)|| e < [y —s@ | 155 1],
= @ sl o=, (59)

By inserting relationship (32) into Eq. (59) we obtain

SMy (b—a)*
Err < 24 07 (A4 60
TS 38 T vy Y (60)

where M4 = max, < <p |y® (x)] or for the discrete form My = max; =0,1,..,N—1 Iy® (x)1,
Xi € [xi, xit1].

3. Examples of Computations

In order to verify the correctness of the proposed numerical schemes, sample calculations
have been performed. One of the important characteristics of the numerical integration
schemes is the determination of the Experimental Order of Convergence (EOC) (Li and
Zeng, 2015; Blaszczyk et al., 2018) for each presented scheme.

If the values of fractional integrals at the given data points can be found in an analytical
way (i.e. the exact solutions are known), then one can determine the computational error
of the numerical integration scheme obtained on the size grid N as

erry = I y(0)| _, — Wn, (61)

where Wy denotes the numerical/approximate value of 77, y(x)|x=¢ and simultaneously
the exact value of I, 5(x)|y=¢. Similarly, the error errN is defined for the right-sided
fractional integral and the Riesz integral.

Next, the estimated EOC can be evaluated as

lerrn 2|
lerry|

EOCy = log, (62)
and should be performed for the computations over a range of different grid sizes.

Whereas, if the exact analytical result of the definite integral is not known, then the
EOC can be determined from the following relationship

Wy — Wy 2l

EOCy =log, o — Uy

(63)

All of the numerical calculations have been performed with the quadruple floating-
point precision. Many compilers, as well as numerous mathematical software, support
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the double precision calculation with the 15-17 significant decimal digits. In the case of
the numerical integrations using the spline interpolation, the effect of rounding errors is
significant, especially for the precise calculations of the EOC. For this reason, the C++11
in GCC (MinGW-W64) compiler and the quadmath library have been used to build the
application. The 128-bit floating point type  float128 for real variables (this type
supports the calculation with the 34 significant decimal digits) and the quadmath functions
have been applied in the calculations.

We also recall the following properties of the fractional integration of the power func-
tions (x — a)? and (b — x)Y (see: Kilbas et al. (2006) )

'y+1)

I (x —a) = m(x —a)’t, fory > —1, a >0, (64)
r 1
I (b—x)" = %(b — )’ fory > —1, a >0, (65)

which are used to determine analytical solutions in the examples below.
ExampLE 1. The integrand function is the eighth-degree polynomial of the form
y(x) = x8 — 8x7 +26x° — 44x° 4+ 40x* — 15x% — 4x? +5x + 1. (66)

Numerical values of 17, y(x) |x:g:b for a = 0 and b = 2 have been investigated. For the

assumed values of a and b, function y(x) takes the values y(a) = 1, y(b) = 3, y'(a) = 3,
y'()=1,y"(a) = -8,y"(b) =4.

The choice of polynomial function (66) gives us the possibility to determine the frac-
tional integral of order o« > 0 of function (66) for @ = 0 at the point x = g = b in the
analytical way using (64), which is expressed by the following formula

o _ r'® 8+a I'(®) T+a I'(7)

e e e LA oy LA Y gy
PO TG g T s,
“Tero” TT61w Pratm’

4O ey s TO e, IO
FG+a) rQ+a) r(+a)

b6+ot

b%, (67)

where I'(k) = (k — D), fork =1,2,....

In Table 1, we report the numerical errors erry (determined using Eq. (61)) and the cal-
culated values of the EOC (using Eq. (62)) for the selected sets of « € {0.4,0.7, 1.4, 2.7}
and N = 100, 200, 400, 800, 1600, 3200, 6400, 12800.

ExampLE 2. In the second example, we take a more complicated integrand function of
the form

(V¥ sinGx?) + 35) -exp(— 452 — ) + 5

(x) = =
Y 3V/x2 41

(68)
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Table 1
Results related to Example 1.
Linear spline Quadratic spline Cubc spline
« N Variant 1 Variant 2 Variant 3

erry EOC erry EOC erry EOC erry EOC erry EOC

0.4 100 3.080E-05 - —3.510E-06 - 2.858E—08 — 1.447E-07 - 3.949E-07 -
200 7.018E—06 2.134 —3.700E—07 3.246 4.080E—09 2.808 8.520E—09 4.086 2.026E—08 4.285
400 1.637E-06 2.100 —3.739E—08 3.307 3.188E—10 3.678 4.996E—10 4.092 1.054E—09 4.265
800 3.880E—-07 2.076 —3.687E—09 3.342 2.177E—11 3.873 2957E—11 4.079 5.576E—11 4.240
1600  9.313E—08 2.059 —3.582E—10 3.363 1418E—12 3.940 1.769E—12 4.063 3.008E—12 4.213
3200 2.256E—08 2.045 —3.449E—11 3.377 9.063E—14 3.968 1.068E—13 4.050 1.654E—13 4.185
6400  5.505E—09 2.035 —3.302E—12 3.385 5.743E—15 3.980 6.497E—15 4.039 9.271E—-15 4.157
12800 1.351E-09 2.027 -3.150E—13 3.390 3.622E—16 3.987 3.977E—16 4.030 5.290E—16 4.131

0.7 100 8.235E-05 - —9.581E-07 - 3.687E-08 — 8.270E—-08 - 1.814E—-07 -
200 2.047E—-05 2.008 —8.226E—08 3.542 3.259E—09 3.500 4.657E—09 4.151 8.352E—-09 4.441
400 5.102E-06 2.004 —6.841E—09 3.588 2237E—10 3.865 2.691E—10 4.113 4.084E—10 4.354
800 1.273E-06 2.002 —5.574E—10 3.617 1440E—11 3.958 1.596E—11 4.075 2.123E—11 4.265
1600  3.180E—07 2.001 —4.479E—11 3.638 9.089E—13 3.985 9.654E—13 4.048 1.165E—12 4.188
3200 7.946E—08 2.001 —3.563E—12 3.652 5.702E—14 3.994 5912E—14 4.030 6.671E—14 4.127
6400  1.986E—08 2.001 —2.814E—13 3.662 3.570E—15 3.998 3.648E—15 4.018 3.938E—15 4.082
12800 4.963E—09 2.000 —2.211E—14 3.670 2.233E—16 3.999 2263E—16 4.011 2373E—16 4.053

1.4 100 1.984E—-04 - —6.312E-08 - 2.960E—-08 — 4.681e-08 - 8.388E—08 -
200 4961E—-05 2.000 —3.301E-09 4.257 2226E—-09 3.733 2.65509 4.140 3.790E—09 4.468
400 1.240E-05 2.000 —1.772E—10 4.220 1453E—-10 3.937 1.567E—10 4.083 1917E—10 4.305
800 3.101E-06 2.000 —9.734E—12 4.186 9.178E—12 3.985 9.500E—12 4.044 1.058E—11 4.179
1600  7.752E-07 2.000 —5.460E—13 4.156 5.751E—13 3.996 5.846E—13 4.022 6.182E—13 4.098
3200 1.938E—07 2.000 —3.120E—14 4.129 3.597E—14 3.999 3.626E—14 4.011 3.730E—14 4.051
6400  4.845E—08 2.000 —1.812E—15 4.106 2.248E—15 4.000 2.257E—15 4.006 2.290E—15 4.026
12800 1.211E—08 2.000 —1.068E—16 4.085 1.405E—16 4.000 1.408E—16 4.003 1418E—16 4.013

2.7 100 2.740E-04 - —1.357E-07 - 3.425E-08 - 5.644E—-08 — 1.042E-07 -
200 6.849E—-05 2.000 —8.525E—09 3.993 2.620E—09 3.708 3.186E—09 4.147 4.683E—09 4.476
400 1.712E-05 2.000 —5.335E—10 3.998 1.718E—10 3.931 1.871E—-10 4.090 2.341E—10 4.322
800 4281E—-06 2.000 —3.335E—11 4.000 1.087E—11 3.983 1.131E—11 4.049 1278E—11 4.195
1600  1.070E—06 2.000 —2.085E—12 4.000 6.814E—13 3.996 6.944E—13 4.025 7.405E—-13 4.109
3200 2.675E—07 2.000 —1.303E—13 4.000 4.262E—14 3.999 4.302E—14 4.013 4.446E—14 4.058
6400 6.689E—08 2.000 —8.144E—15 4.000 2.664E—15 4.000 2.677E—15 4.006 2.722E—15 4.030
12800 1.672E—08 2.000 —5.090E—16 4.000 1.665E—16 4.000 1.669E—16 4.003 1.683E—16 4.015

Analytical values of 18‘Jr y(x) \X=2 calculated

3.6979129457596915301988815161146608
4.0856207593403175492511974048448624
4.3604818404289140653601695680338754
2.9484099812828967875285769194034989

using formula (67)

assuming that the analytic form of the left-sided fractional integral is unknown or has a
very complicated form. Here, the approximated values of I, y(x)|x=¢g=p for a = 1 and
b = 4 have been calculated.

In Table 2, the presentation of numerical results Wy (where Wy = I;‘+s(x)| x=b Ob-

tained on the grid size N) is limited to 15 decimal digits, but all calculations (including
the EOC obtained using formula (63)) have been performed for real numbers with the ac-
curacy of 34 significant decimal digits. Identical sets of parameters & and N, as given in
Example 1, have been taken into account.

ExampLE 3. The next example concerns the determination of numerical values of the
Riesz fractional integral. Here, we take into account the polynomial of fifth degree (higher
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Results related to Example 2.

Table 2

Linear spline

Quadratic spline

Cubic spline

a Variant 1 Variant 2 Variant 3
Wy EOC Wy EOC Wy EOC Wy EOC Wy EOC
0.4 100 0.129175293650077 - 0.129159283883400 - 0.129159149778395 — 0.129159260371743 - 0.129159333125011 -
200 0.129163284309064 1.973 0.129159195936989 4.003 0.129159190635184 6.329 0.129159191910429 5.277 0.129159192879209 5.720
400 0.129160226303874 1.981 0.129159190452032 3.971 0.129159190127129 3.442 0.129159190145188 4.784 0.129159190219303 4.307
800 0.129159451516164 1.986 0.129159190102355 3.920 0.129159190080380 4.132  0.129159190081100 4.259 0.129159190084947 4.261
1600 0.129159255887306  1.989 0.129159190079257 3.864 0.129159190077714 4.094 0.129159190077754 4.111 0.129159190077939 4.243
3200 0.129159206615184 1.992  0.129159190077671 3.803 0.129159190077558 4.033  0.129159190077560 4.071 0.129159190077569 4.216
6400 0.129159194228093  1.994  0.129159190077557 3.738 0.129159190077548 4.004 0.129159190077549 4.052 0.129159190077549 4.188
12800 0.129159191118241 - 0.129159190077549 — 0.129159190077548 — 0.129159190077548 — 0.129159190077548 —
0.7 100 0.165128141318417 - 0.165103544764964 — 0.165103545293346 — 0.165103583875713 — 0.165103610220807 —
200 0.165109708612410 1.997 0.165103550450332 3.702 0.165103551597517 3.312 0.165103551927078 5.055 0.165103552154690 5.630
400 0.165105091970249  1.998 0.165103550887115 3.870 0.165103550962706 3.948 0.165103550965874 4.443 0.165103550982253 4.292
800 0.165103936437045 1.999 0.165103550916983 3.997 0.165103550921568 4.076 0.165103550921684 4.115 0.165103550922400 4.208
1600 0.165103647338066 1.999 0.165103550918853 4.092 0.165103550919128 4.035 0.165103550919134 4.045 0.165103550919163 4.153
3200 0.165103575029852  2.000 0.165103550918963 4.189 0.165103550918979 4.011 0.165103550918980 4.025 0.165103550918981 4.106
6400 0.165103556947631 2.000 0.165103550918969 4.322 0.165103550918970 4.003 0.165103550918970 4.015 0.165103550918970 4.071
12800 0.165103552426280 — 0.165103550918969 — 0.165103550918970 - 0.165103550918970 — 0.165103550918970 —
1.4 100 0.261754500404957 - 0.261701311442012 - 0.261701464571557 — 0.261701448885203 — 0.261701442194459 —
200 0.261714688712354 2.001 0.261701418707993 4.009 0.261701427658470 4.410 0.261701427393735 3.863 0.261701427109875 3.649
400 0.261704741164795 2.000 0.261701425371550 4.003 0.261701425921852 4.113 0.261701425916636 3.955 0.261701425907174 3.804
800 0.261702254627535 2.000 0.261701425787252 4.001 0.261701425821510 4.028 0.261701425821390 3.980 0.261701425821085 3.907
1600 0.261701633016401  2.000 0.261701425813219 4.000 0.261701425815358 4.007 0.261701425815355 3.990 0.261701425815345 3.954
3200 0.261701477615193  2.000 0.261701425814842 4.000 0.261701425814975 4.002 0.261701425814975 3.995 0.261701425814975 3.977
6400 0.261701438765002 2.000 0.261701425814943 4.000 0.261701425814951 4.000 0.261701425814951 3.998 0.261701425814951 3.989
12800 0.261701429052462 — 0.261701425814949 — 0.261701425814950 — 0.261701425814950 — 0.261701425814950 —
2.7 100 0.351816614974611 — 0.351709046915229 — 0.351709417655548 — 0.351709374905998 — 0.351709355473402 -
200 0.351736132977994  2.001 0.351709305553739 4.004 0.351709327145813 4.448 0.351709326481777 3.792 0.351709325779111 3.398
400 0.351716024501843  2.000 0.351709321670694 4.001 0.351709322999350 4.115 0.351709322986643 3.945 0.351709322963108 3.786
800 0.351710998133673  2.000 0.351709322677255 4.000 0.351709322760002 4.027 0.351709322759708 3.979 0.351709322758956 3.901
1600 0.351709741588551  2.000 0.351709322740154 4.000 0.351709322745321 4.006 0.351709322745313 3.990 0.351709322745290 3.952
3200 0.351709427455202  2.000 0.351709322744085 4.000 0.351709322744408 4.002 0.351709322744407 3.995 0.351709322744407 3.976
6400 0.351709348922048 2.000 0.351709322744330 4.000 0.351709322744351 4.000 0.351709322744351 3.998 0.351709322744351 3.988
12800 0.351709329288771 — 0.351709322744346 — 0.351709322744347 — 0.351709322744347 — 0.351709322744347 —
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order than the spline of third order) of the form
y(x) = x> — 13x* + 59x3 — 108x% + 67x + 4. (69)

The values of the Riesz fractional integral of function (69) we designate in the finite
interval [a, b] at the point x = g (where a < g < b). Sample calculations have been
carried out fora = 1, b = 5 and g = 2. The point g = 2 corresponds to the node xy,,
where M = N /4, and N must be a multiple of 4. In this example, we take the selected sets
of « € {0.25,0.75,1.25,1.75} and N = 100, 200, 400, 800, 1600, 3200, 6400, 12800.
In order to find the analytical solution of this integral, we first rewrite polynomial (69) by
collecting similar terms that match the expressions (x — a) and (b — x)

=12 =8 —D*+17c -1+ -1D>2=19x = 1)+ 10

—(5—=xP +126—x)* =495 —x)> +77(5 — x)* = 37(5 — x) + 14,
(70)

y(x)

and then the properties (64) and (65) can be directly applied, respectively. Hence, we get
the analytical solution

Rja _ 1 I'(6) _ 1\5Ha _ 5 \5Ha
Tisy®l=e = 5072 (F(6+a) (g = D™ - G-
F(S) _ _ 1\4+a _ o\4ta
7“5“0( 8(g — D" +12(5 — )*™)
& _ 1\3tao _ \3ta
+ F(4+a)(17(g 1) 49(5 — g)°*%)
L?)) _1\2Ha N2+
e (¢ = D> +77(5 — )*™)
Lz) _ _ yto _ RN E
F(ZJHX)( 19 -1 37(5 - )'*%)
r) o "
t Ty (106 = D+ 146G —0) ))- (71)

In Table 3, we present the errors erry (where erry = RI[@‘{’S]y(x) lx=2 — ¥y, and Wy
is numerical value of the Riesz integral obtained on the grid size N) and the calculated
values of the EOC (Eq. (62)), respectively, for different kinds of the spline interpolation
methods.

In Fig. 1, the plot of function (69) (which corresponds to @ = 0) and the plots of
the Riesz fractional integrals Rlﬁ’SJy(x) (71) for ¢ = 0.25,0.5,0.75,1.25,1.5,1.75,2
are shown. While, the numerical errors erry obtained on the interval [1,5] for N =
100, 200, 400, 800, 1600, 3200, 6400, 12800 and o = 0.75, for five considered methods
are illustrated in the plots in Fig. 2. It can be seen for this considered problem that the
error values can be both positive and negative, but errors always decrease as N increases.
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Table 3

Results related to Example 3.

Linear spline

Quadratic spline

Cubic spline

1.25

o N Variant 1 Variant 2 Variant 3
erry EOC erry EOC erry EOC erry EOC erry EOoC
0.25 100 —2.957E-03 - —1.384E-06 - —1.318E-07 - —1.346E—-07 - —1.421E-07 -
200 —7.766E—04 1.929 —1.581E—07 3.130 —8.981E—09 3.876 —9.055E—09 3.893 —9.290E—09 3.935
400 —2.020E—04 1.943 —9.973E—09 3.987 —5.990E—10 3.906 —6.012E—10 3.913 —6.085E—10 3.932
800 —5.214E-05 1.954 —6.280E—10 3.989 —3.941E—11 3.926 —3.947E—11 3.929 —3.970E—11 3.938
1600 —1.338E—-05 1.962 —3.950E—11 3.991 —2.566E—12 3.941 —2.568E—12 3.942 —2.575E—12 3.946
3200 —3.418E—-06 1.969 —2.482E—12 3.992 —1.658E—13 3.952 —1.658E—13 3.953 —1.661E—13 3.955
6400 —8.698E—07 1.974 —1.558E—13 3.994 —1.065E—14 3.961 —1.065E—14 3.961 —1.065E—14 3.962
12800 —2.207E—07 1.979 —9.774E—15 3.995 —6.803E—16 3.968 —6.803E—16 3.968 —6.806E—16 3.969
0.75 100 —8.977E-03 - —3.265E—-06 - 3319E-07 - 3.356E-07 - 3.575E-07 -
200 —2.251E-03 1.996 —2.213E—07 3.883 2.050E—08 4.017 2.065E—08 4.022 2.134E—08 4.067
400  —5.637E—04 1.997 —1.372E—08 4.011 1.275E—09 4.008 1.280E—09 4.012 1.301E—09 4.035
800 —1.411E—-04 1.999 —8.537E—10 4.007 7.945E—11 4.004 7.962E—11 4.007 8.029E—11 4.019
1600 —3.529E—05 1.999 —5.321E—11 4.004 4.958E—12 4.002 4.963E—12 4.004 4.984E—12 4.010
3200 —8.825E—06 1.999 —3.320E—12 4.002 3.096E—13  4.001 3.098E—13  4.002 3.104E—13  4.005
6400 —2.207E—06 2.000 —2.073E—13 4.001 1.934E—14 4.001 1.935E—14 4.001 1.937E—14  4.003
12800 —5.518E—07 2.000 —1.295E—14 4.001 1.208E—15 4.000 1.209E—15 4.001 1.209E—15 4.001
1.25 100 1.125E-02 - 5.353E-06 - —1.499E-06 - —1.558E—-06 - —1.765E—-06 —
200  2.812E-03  2.000 3.320E—07 4.011 —9.390E—08 3.997 —9.569E—08 4.026 —1.021E—07 4.111
400  7.029E-04 2.000 2.077E—08 3.998 —5.872E—09 3.999 —5.927E—09 4.013 —6.129E—09 4.059
800 1.757E—04  2.000 1.299E—09 3.999 —3.671E—10 4.000 —3.688E—10 4.007 —3.751E—10 4.030
1600 4.393E—05 2.000 8.120E—11  4.000 —2.294E—11 4.000 —2.300E—11 4.003 —2.319E—11 4.015
3200 1.098E—05 2.000 5.075E—12 4.000 —1.434E—12 4.000 —1.436E—12 4.002 —1.442E—12 4.008
6400 2.746E—06  2.000 3.172E—13  4.000 —8.962E—14 4.000 —8.967E—14 4.001 —8.986E—14 4.004
12800 6.864E—07  2.000 1.983E—14 4.000 —5.601E—15 4.000 —5.603E—15 4.000 —5.609E—15 4.002
1.75 100  6.695E-03 - 5.745E-06 - —1.102E-06 - —1.164E—-06 - —1.373E-06 -
200 1.674E—-03  2.000 3.587E—07 4.001 —6.914E—08 3.994 —7.099E—08 4.035 —7.753E—08 4.146
400  4.185E—04 2.000 2.242E—08 4.000 —4.326E—09 3.999 —4.382E—09 4.018 —4.586E—09 4.079
800 1.046E—04  2.000 1.401E—09 4.000 —2.704E—10 4.000 —2.722E—10 4.009 —2.786E—10 4.041
1600 2.616E—05 2.000 8.759E—11 4.000 —1.690E—11 4.000 —1.696E—11 4.005 —1.716E—11 4.021
3200 6.540E—06 2.000 5474E—12 4.000 —1.056E—12 4.000 —1.058E—12 4.002 —1.064E—12 4.011
6400 1.635E—06 2.000 3.422E—13 4.000 —6.603E—14 4.000 —6.608E—14 4.001 —6.628E—14 4.005
12800 4.087E—07  2.000 2.138E—14 4.000 —4.127E—15 4.000 —4.128E—15 4.001 —4.134E—15 4.003
o Analytical values of Rlﬁ,S]y(x)\,@z calculated using formula (70)
0.25 6.9563532456344804165421264614628538
0.75  42.4546893190059613381179849166915634
1.25 —64.6142429211655969966421680694892918
1.75 —32.5941704287460581059377804482796869
860 ; : !
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Fig. 1. Plots of R

y(x) for function (68) and @ € {0, 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, 2}.
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Fig. 2. The numerical errors erry = R I[Oi 5] y(x) — Wy for different kinds of the spline interpolation methods,
a =0.75and N = 100, 200, 400, 800, 1600, 3200, 6400, 12800.

ExampLE 4. The last example concerns the comparison of the calculation results of the
developed methods with an external approach. Here, we take into account the approxi-
mation method developed by Dimitrov (2021). His asymptotic expansion formula for the
trapezoidal approximation of the left-sided fractional integral is as follows (the symbols
in this formula have been adapted to the symbols used in this work)

N—1
o ~ L o y(x —kAx) y(a)
Ia+y(x) — F(O{) ((Ax) ]; kl—a + 2(x _ a)l—ﬂl
_@=Dx—a)**y@ — @« —a)* Y@
12
— (1 = a)y(0)(AX)* + ¢ (—a)y (x)(Ax)*T!

(Ax)?
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Table 4
Results related to Example 4.

Dimitrov’s method Cubic spline
N Ax Variant 1 Variant 2 Variant 3

erry EOC erry EOoC erry EOoC erry EOoC
40 0.05 no data - 487E—08 - 7.98E—08 - 1.66E—07 -
80  0.025 1.06E—09 4.04725 3.46E—09 3.81833 4.66E—09 4.09663 8.45E—09 4.29274
160 0.0125 6.48E—11 4.03414 227E—10 3.92785 2.76E—10 4.07693 4.44E—10 4.25181
320 0.00625 398E—12 4.02694 1.45E—11 3.96779 1.66E—11 4.05782 240E—11 4.20937

640 0.003125 2.34E—13 4.08360 9.17E—13 3.98378 1.01E—12 4.04244 1.33E—12 4.16883
Analytical value of 1(?+5 exp(x)|x=2 = 7.052852096484309014376129 (calculated using (73))

r 2(” A+ 4 g(-2— )2 é”(Ax)““)

+0((ax)*), (72)

—¢(=l-a)

where ¢(-) is the Riemann zeta function.

Based on one of the examples presented in Dimitrov (2021), we take function y(x) =
exp(Ax), for which the analytical form of the left-sided fractional integral of order & > 0
is the following

1% exp(hx) = exp(Aa)(x — )" E1, 14 (A(x — @), (73)

where Ey g(-) is two-parameter Mittag-Lefller function (Kilbas et al., 2006) and A is a
constant.

Table 4 presents the errors erry and the EOC’s values calculated for three variants of
the cubic splines, whereby the results for the Dimitrov’s method have been taken from his
work (see: Dimitrov, 2021). The example calculations have been performed forA = 1, o =
0.5,a=0,b=2and N = 40, 80, 160, 320, 640. The analytical value of I3 exp(x)|,—2
is also given in the table.

As can be seen in Table 4, the results for all variants of the cubic splines and for the
Dimitrov’s method have the identical EOC = 4, but for the same integration step sizes,
the obtained numerical errors are slightly larger in the case of the cubic spline methods.
As an explanation for the smaller error values in the Dimitrov’s article, one should delve
into his method. Equation (72) contains the derivatives (up to the third order) of the in-
tegrand function. Knowledge of the analytical values of these derivatives at points a and
x significantly improves the quality of numerical evaluation of the fractional integral in
his developed method. His method can be considered a composition of the analytical and
numerical approaches. Our computational schemes based on the cubic splines are purely
numerical, and also the values of derivatives of the integrand function at the end point con-
ditions are determined only numerically. Unfortunately, in the case of a very complicated
form of the integrand function, it is often difficult to find the values of the first, second
and third derivatives in an analytical way, and hence it can be problematic to use it for the
Dimitrov’s method.
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4. Conclusions

We have derived the numerical integration formulas for evaluating the fractional order
integrals. These formulas are based on the interpolation of the integrand function by the
linear, quadratic and cubic splines. The integration method that uses the linear spline (i.e.
the piecewise linear function) is treated as a complement and is used to compare the ob-
tained results with the methods that use the quadratic and cubic splines.

Analysing the results presented in all tables and graphs (as well as other performed
results, but omitted and not presented in this work), it can be noticed that the calculated
numerical values of the fractional order integrals have good agreement with the exact
analytical solution (if this solution is known, of course), and the numerical errors erry
tend to O as the grid size N increases for all derived integration methods. We can see
that as N increases, the values of the EOC are stabilized and tend to the specified val-
ues, and for different kinds of splines used we obtained: EOC = 2 for the linear spline,
EOC = min{3 + «, 4} for the quadratic spline, EOC = 4 for all variants of the clamped
cubic splines. Here, one can observe the consistency of the obtained EOC values for the
particular methods with the orders of error (defined by the O notation) which were es-
timated analytically. Moreover, analysing the numerical results (by comparing the order
of numerical errors, as well as the EOC) for three variants of the cubic splines, we can
notice that these numerical methods have a similar order of errors, however, it can be seen
that variant 1 generally generates slightly smaller errors. If we compare the order of nu-
merical errors for methods using the quadratic and cubic splines (where the EOC = 4
is the same), we can conclude that the quadratic spline gives worse results than the cubic
splines.

From a computational point of view, in the case of the methods that use the clamped
cubic splines (all variants), the linear system of equations needs to be solved, which can be
computationally time consuming, and thus it has certain disadvantages of the methods as a
result. But here, in the case of derived methods, we need only to solve a tri-diagonal system
of equations, which can be solved easily and faster, e.g. by using the Thomas algorithm
of complexity O(N). This problem does not occur in the case of the linear and quadratic
splines where the coefficients of the interpolation spline are determined locally, and these
algorithms can be easily parallelized.

Summing up, it can be said that the obtained numerical results for the derived integra-
tion methods that use the cubic or quadratic splines give higher values of the EOC than for
the method that uses the linear splines. This confirms the efficiency and the applicability
of the derived numerical algorithms for the fractional integration of function.
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