Pub. online:23 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 1 (2020), pp. 21–34
Abstract
The best-worst method (BWM) is a multi-criteria decision-making method which works based on a pairwise comparison system. Using such a systematic pairwise comparison enhances consistency and reliability of results. The BWM results in single solution when there are two or three criteria, and for problems with fully-consistent systems, with any number of criteria. To obtain the weights of criteria for not fully-consistent comparison systems with more than three criteria, there may be a multiple optimal solution. Although multiple optimality may be desirable in some cases, in other cases, decision-makers prefer to have a unique optimal solution. This study proposes new models which result in a unique solution. The proposed models have less constraints in comparison with the previous models.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 187–210
Abstract
A relevant challenge introduced by decentralized installations of photo-voltaic systems is the mismatch between green energy production and the load curve for domestic use. We advanced an ICT solution that maximizes the self-consumption by an intelligent scheduling of appliances. The predictive approach is complemented with a reactive one to minimize the short term effects due to prediction errors and to unforeseen loads. Using real measures, we demonstrated that such errors can be compensated modulating the usage of continuously running devices such as fridges and heat-pumps. Linear programming is used to dynamically compute in real-time the optimal control of these devices.
Journal:Informatica
Volume 26, Issue 3 (2015), pp. 435–451
Abstract
An effective way for managing and controlling a large number of inventory items or stock keeping units (SKUs) is the inventory classification. Traditional ABC analysis which based on only a single criterion is commonly used for classification of SKUs. However, we should consider inventory classification as a multi-criteria problem in practice. In this study, a new method of Evaluation based on Distance from Average Solution (EDAS) is introduced for multi-criteria inventory classification (MCIC) problems. In the proposed method, we use positive and negative distances from the average solution for appraising alternatives (SKUs). To represent performance of the proposed method in MCIC problems, we use a common example with 47 SKUs. Comparing the results of the proposed method with some existing methods shows the good performance of it in ABC classification. The proposed method can also be used for multi-criteria decision-making (MCDM) problems. A comparative analysis is also made for showing the validity and stability of the proposed method in MCDM problems. We compare the proposed method with VIKOR, TOPSIS, SAW and COPRAS methods using an example. Seven sets of criteria weights and Spearman’s correlation coefficient are used for this analysis. The results show that the proposed method is stable in different weights and well consistent with the other methods.
Journal:Informatica
Volume 21, Issue 1 (2010), pp. 31–40
Abstract
As a means of supporting quality of service guarantees, aggregate multiplexing has attracted a lot of attention in the networking community, since it requires less complexity than flow-based scheduling. However, contrary to what happens in the case of flow-based multiplexing, few results are available for aggregate-based multiplexing. In this paper, we consider a server multiplexer fed by several flows and analyze the impact caused by traffic aggregation on the flows at the output of the server. No restriction is imposed on the server multiplexer other than the fact that it must operate in a work-conserving fashion. We characterize the best arrival curves that constrain the number of bits that leave the server, in any time interval, for each individual flow. These curves can be used to obtain the delays suffered by packets in complex scenarios where multiplexers are interconnected, as well as to determine the maximum size of the buffers in the different servers. Previous results provide tight delay bounds for networks where servers are of the FIFO type. Here, we provide tight bounds for any work-conserving scheduling policy, so that our results can be applied to heterogeneous networks where the servers (routers) can use different work-conserving scheduling policies such as First-In First-Out (FIFO), Earliest Deadline First (EDF), Strict Priority (SP), Guaranteed Rate scheduling (GR), etc.
Journal:Informatica
Volume 11, Issue 3 (2000), pp. 257–268
Abstract
Fingerprint ridge frequency is a global feature, which is most prominently different in fingerprints of men and woman, and it also changes within the maturing period of a person. This paper proposes the method of fingerprint pre-classification, based on the ridge frequency replacement by the density of edge points of the ridge boundary. This method is to be used after applying the common steps in most fingerprint matching algorithms, namely the fingerprint image filtering, binarization and marking of good/bad image areas. The experimental performance evaluation of fingerprint pre-classification is presented. We have found that fingerprint pre-classification using the fingerprint ridge edges density is possible, and it enables to preliminary reject part of the fingerprints without heavy loss of the recognition quality. The paper presents the evaluation of two sources of fingerprint ridge edges density variability: a) different finger pressure during the fingerprint scanning, b) different distance between the geometrical center of the fingerprint and position of the fingerprint fragment.