1 Introduction
2 Basic Concepts
2.1 Intuitionistic Uncertain Linguistic Sets
Definition 1 (See Atanassov, 1983).
Definition 2 (See Xu, 2006).
Definition 3 (See Liu and Jin, 2012).
(2)
\[ A=\big\{\big\langle {x_{i}}\big|\big[[{s_{\theta ({x_{i}})}},{s_{\tau ({x_{i}})}}],\big({u_{A}}({x_{i}}),{v_{A}}({x_{i}})\big)\big]\big\rangle \big|{x_{i}}\in X\big\},\]Definition 4 (See Liu and Jin, 2012).
Definition 5 (See Liu and Jin, 2012).
Definition 6 (See Liu and Jin, 2012).
(3)
\[ E(\tilde{\alpha })={s_{\frac{(\theta (\alpha )+\tau (\alpha ))(u(\alpha )+1-v(\alpha ))}{4}}},\]2.2 Several New Operations and a New Ranking Order
Definition 7.
-
(i) ${\lambda _{1}}\tilde{\alpha }\oplus {\lambda _{2}}\tilde{\beta }=[[{s_{{\lambda _{1}}\theta (\alpha )+{\lambda _{2}}\theta (\beta )}},{s_{{\lambda _{1}}\tau (\alpha )+{\lambda _{2}}\tau (\beta )}}],({\lambda _{1}}u(\alpha )+{\lambda _{2}}u(\beta ),{\lambda _{1}}v(\alpha )+{\lambda _{2}}v(\beta ))]$, ${\lambda _{1}},{\lambda _{2}}\in [0,1]\wedge {\lambda _{1}}+{\lambda _{2}}\leqslant 1$;
-
(ii) ${\tilde{\alpha }^{{\lambda _{1}}}}\otimes {\tilde{\beta }^{{\lambda _{2}}}}=[[{s_{\theta {(\alpha )^{{\lambda _{1}}}}\theta {(\beta )^{{\lambda _{2}}}}}},{s_{\tau {(\alpha )^{{\lambda _{1}}}}\tau {(\beta )^{{\lambda _{2}}}}}}],(u{(\alpha )^{{\lambda _{1}}}}u{(\beta )^{{\lambda _{2}}}},v{(\alpha )^{{\lambda _{1}}}}v{(\beta )^{{\lambda _{2}}}})]$, ${\lambda _{1}},{\lambda _{2}}\in [0,1]\wedge {\lambda _{1}}+{\lambda _{2}}\leqslant 1$.
Property 1.
-
(i) $\lambda (\tilde{\alpha }\oplus \tilde{\beta })=\lambda \tilde{\alpha }\oplus \lambda \tilde{\beta }$, $\lambda \in [0,1]$;
-
(ii) $({\lambda _{1}}+{\lambda _{2}})\tilde{\alpha }={\lambda _{1}}\tilde{\alpha }\oplus {\lambda _{2}}\tilde{\alpha }$, ${\lambda _{1}},{\lambda _{2}}\in [0,1]\wedge {\lambda _{1}}+{\lambda _{2}}\leqslant 1$;
-
(iii) $\lambda (\tilde{\alpha }\otimes \tilde{\beta })=\lambda \tilde{\alpha }\otimes \lambda \tilde{\beta }$, $\lambda \in [0,1]$;
-
(iv) ${\tilde{\alpha }^{{\lambda _{1}}+{\lambda _{2}}}}={\tilde{\alpha }^{{\lambda _{1}}}}\otimes {\tilde{\alpha }^{{\lambda _{2}}}}$, ${\lambda _{1}},{\lambda _{2}}\in [0,1]\wedge {\lambda _{1}}+{\lambda _{2}}\leqslant 1$.
Definition 8.
Property 2.
-
(i) $\mathit{NS}(\tilde{\alpha })\leqslant \mathit{NS}(\tilde{\beta })$ if and only if $\mathit{NS}(\lambda \tilde{\alpha })\leqslant \mathit{NS}(\lambda \tilde{\beta })$,
-
(ii) $NA(\tilde{\alpha })\leqslant NA(\tilde{\beta })$ if and only if $\mathit{NS}({\tilde{\alpha }^{\lambda }})\leqslant \mathit{NS}({\tilde{\beta }^{\lambda }})$.
Proof.
2.3 Fuzzy Measures and the Choquet Integral
Definition 9 (See Sugeno, 1974).
Definition 10 (See Grabisch, 1997).
(7)
\[ {C_{\mu }}\big(f({x_{(1)}}),f({x_{(2)}}),\dots ,f({x_{(n)}})\big)={\sum \limits_{i=1}^{n}}f({x_{(i)}})\big(\mu ({A_{(i)}})-\mu ({A_{(i+1)}})\big),\]3 Several Intuitionistic Uncertain Linguistic Symmetrical Choquet Aggregation Operators
3.1 Intuitionistic Uncertain Linguistic Symmetrical Choquet Aggregation Operators
Definition 11.
(8)
\[ {\mathrm{IULSCA}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})={\underset{i=1}{\overset{n}{\bigoplus }}}\big(\mu ({A_{(i)}})-\mu ({A_{(i+1)}})\big){\tilde{\alpha }_{(i)}},\]Remark 1.
(9)
\[ {\mathrm{IULSWA}_{w}}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})={\underset{i=1}{\overset{n}{\bigoplus }}}{w_{i}}{\tilde{\alpha }_{(i)}},\](10)
\[ {\mathrm{ILSCA}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})={\underset{i=1}{\overset{n}{\bigoplus }}}\big(\mu ({A_{(i)}})-\mu ({A_{(i+1)}})\big){\tilde{\alpha }_{(i)}},\]Theorem 1.
(11)
\[ \begin{array}{l}{\mathrm{IULSCA}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})\\ {} \hspace{1em}=\bigg[[{s_{{\textstyle\textstyle\sum _{i=1}^{n}}(\mu ({A_{(i)}})-\mu ({A_{(i+1)}}))\theta ({\alpha _{i}})}},{s_{{\textstyle\textstyle\sum _{i=1}^{n}}(\mu ({A_{(i)}})-\mu ({A_{(i+1)}}))\tau ({\alpha _{i}})}}],\\ {} \hspace{2em}\bigg({\textstyle\textstyle\sum _{i=1}^{n}}\big(\mu ({A_{(i)}})-\mu ({A_{(i+1)}})\big)u({\alpha _{i}}),{\textstyle\textstyle\sum _{i=1}^{n}}\big(\mu ({A_{(i)}})-\mu ({A_{(i+1)}})\big)v({\alpha _{i}})\big)\bigg],\end{array}\]Proof.
Definition 12.
(12)
\[ {\mathrm{IULSCGM}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})={\underset{i=1}{\overset{n}{\bigotimes }}}{\tilde{\alpha }_{(i)}^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}},\]Remark 2.
Theorem 2.
(15)
\[ \begin{array}{l}{\mathrm{IULSCGM}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})\\ {} \hspace{1em}=\bigg[\big[{s_{{\textstyle\textstyle\prod _{i=1}^{n}}\theta {({\alpha _{i}})^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}}}},{s_{{\textstyle\textstyle\prod _{i=1}^{n}}\tau {({\alpha _{i}})^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}}}}\big],\\ {} \hspace{2em}\bigg({\textstyle\textstyle\prod _{i=1}^{n}}u{({\alpha _{i}})^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}},{\textstyle\textstyle\prod _{i=1}^{n}}v{({\alpha _{i}})^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}}\bigg)\bigg],\end{array}\]Property 3.
-
(i) Commutativity: Let $\{{\tilde{\alpha }^{\prime }_{1}},{\tilde{\alpha }^{\prime }_{2}},\dots ,{\tilde{\alpha }^{\prime }_{n}}\}$ be a permutation of $\{{\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}}\}$, then
-
(ii) Idempotency: When the IULVs ${\tilde{\alpha }_{i}}$ for all $i=1,2,\dots ,n$ equal, namely, ${\tilde{\alpha }_{i}}=\tilde{\alpha }$ for any i, then
-
(iii) Comonotonicity: Let ${\tilde{\beta }_{i}}=[[{s_{\theta ({\beta _{i}})}},{s_{\tau ({\beta _{i}})}}],(u({\beta _{i}}),v({\beta _{i}}))]$ for all $i=1,2,\dots ,n$ be another set of IULVs. If
(20)
\[ {\tilde{\alpha }_{(1)}}\preceq {\alpha _{(2)}}\preceq \dots \preceq {\alpha _{(n)}}\hspace{1em}\text{if and only if}\hspace{1em}{\tilde{\beta }_{(1)}}\preceq {\beta _{(2)}}\preceq \dots \preceq {\beta _{(n)}}\] -
(iv) Boundary: We have:
(23)
\[\begin{aligned}{}\min \{{\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}}\}\preceq & {\mathrm{IULSCA}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})\hspace{2em}\\ {} \preceq & \max \{{\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}}\},\hspace{2em}\end{aligned}\](24)
\[\begin{array}{r@{\hskip0pt}l@{\hskip0pt}r}\displaystyle \min \{{\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}}\}& \displaystyle \preceq \hspace{2em}& \displaystyle {\mathrm{IULSCGM}_{\mu }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})\\ {} \displaystyle \preceq & \displaystyle \max \{{\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}}\}.\hspace{2em}\end{array}\]
3.2 Generalized Shapley Choquet Operators
Definition 13.
(27)
\[ {\mathrm{GSIULSCA}_{\Phi }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})={\underset{i=1}{\overset{n}{\bigoplus }}}\big({\Phi _{{A_{(i)}}}}(\mu ,A)-{\Phi _{{A_{(i+1)}}}}(\mu ,A)\big){\tilde{\alpha }_{(i)}},\]Theorem 3.
(28)
\[ \begin{array}{l}{\mathrm{GSIULSCA}_{\Phi }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})\\ {} \hspace{1em}=\bigg[\big[{s_{{\textstyle\textstyle\sum _{i=1}^{n}}({\Phi _{{A_{(i)}}}}(\mu ,A)-{\Phi _{{A_{(i+1)}}}}(\mu ,A))\theta ({\alpha _{i}})}},{s_{{\textstyle\textstyle\sum _{i=1}^{n}}({\Phi _{{A_{(i)}}}}(\mu ,A)-{\Phi _{{A_{(i+1)}}}}(\mu ,A))\tau ({\alpha _{i}})}}\big],\\ {} \hspace{2em}\bigg({\textstyle\textstyle\sum _{i=1}^{n}}\big({\Phi _{{A_{(i)}}}}(\mu ,A)-{\Phi _{{A_{(i+1)}}}}(\mu ,A)\big)u({\alpha _{i}}),\\ {} \hspace{2em}{\textstyle\textstyle\sum _{i=1}^{n}}\big({\Phi _{{A_{(i)}}}}(\mu ,A)-{\Phi _{{A_{(i+1)}}}}(\mu ,A)\big)v({\alpha _{i}})\bigg)\bigg],\end{array}\]Definition 14.
(29)
\[ {\mathrm{GSIULSCGM}_{\Phi }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})={\underset{i=1}{\overset{n}{\bigotimes }}}{\tilde{\alpha }_{(i)}^{{\Phi _{{A_{(i)}}}}(\mu ,A)-{\Phi _{{A_{(i+1)}}}}(\mu ,A)}},\]Theorem 4.
(30)
\[ \begin{array}{l}{\mathrm{GSIULSCGM}_{\Phi }}({\tilde{\alpha }_{1}},{\tilde{\alpha }_{2}},\dots ,{\tilde{\alpha }_{n}})\\ {} \hspace{1em}=\bigg[\big[{s_{{\textstyle\textstyle\prod _{i=1}^{n}}\theta {({\alpha _{i}})^{{\Phi _{{A_{(i)}}}}(\mu ,N)-{\Phi _{{A_{(i+1)}}}}(\mu ,N)}}}},{s_{{\textstyle\textstyle\prod _{i=1}^{n}}\tau {({\alpha _{i}})^{{\Phi _{{A_{(i)}}}}(\mu ,N)-{\Phi _{{A_{(i+1)}}}}(\mu ,N)}}}}\big],\\ {} \hspace{2em}\bigg({\textstyle\textstyle\prod _{i=1}^{n}}u{({\alpha _{i}})^{{\Phi _{{A_{(i)}}}}(\mu ,N)-{\Phi _{{A_{(i+1)}}}}(\mu ,N)}},{\textstyle\textstyle\prod _{i=1}^{n}}v{({\alpha _{i}})^{{\Phi _{{A_{(i)}}}}(\mu ,N)-{\Phi _{{A_{(i+1)}}}}(\mu ,N)}}\bigg)\bigg],\end{array}\]4 A New Procedure to GDM
4.1 Models for Ascertaining Fuzzy Measures
Definition 15.
Property 4.
-
(i) $D(\tilde{\alpha },\tilde{\beta })=D(\tilde{\beta },\tilde{\alpha })$;
-
(ii) $D(\tilde{\alpha },\tilde{\beta })=0$ if and only if $\left\{\begin{array}{l}\theta (\alpha )=\theta (\beta ),\\ {} \tau (\alpha )=\tau (\beta ),\end{array}\right.$ and $\left\{\begin{array}{l}u(\alpha )=u(\beta ),\\ {} v(\alpha )=v(\beta );\end{array}\right.$
-
(iii) $D(\tilde{\alpha },\tilde{\beta })+D(\tilde{\beta },\tilde{\gamma })\geqslant D(\tilde{\alpha },\tilde{\gamma })$.
(32)
\[\begin{array}{l}\displaystyle {\varphi ^{\ast }}=\min {\sum \limits_{k=1}^{q}}{\sum \limits_{l=1}^{q}}D({\tilde{A}_{j}^{k}},{\tilde{A}_{j}^{l}}){\phi _{{e_{k}}}}({\mu ^{j}},E),\\ {} \displaystyle \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l@{\hskip4.0pt}l}{\mu ^{j}}(E)=1,\hspace{1em}\\ {} {\mu ^{j}}(S)\leqslant {\mu ^{j}}(T),\hspace{1em}& \forall S,T\subseteq E,S\subseteq T,\\ {} {\mu ^{j}}({e_{k}})\in {W_{{e_{k}}}^{j}},\hspace{2.5pt}{\mu ^{j}}({e_{k}})\geqslant 0,\hspace{1em}& k=1,2,\dots ,q,\end{array}\right.\end{array}\](36)
\[\begin{array}{l}\displaystyle {\phi ^{\ast }}=\min {\sum \limits_{i=1}^{m}}{\sum \limits_{j=1}^{n}}{D_{ij}}{\phi _{{c_{j}}}}(v,C),\\ {} \displaystyle \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l@{\hskip4.0pt}l}v(C)=1,\hspace{1em}\\ {} v(S)\leqslant v(T),\hspace{1em}& \forall S,T\subseteq C,S\subseteq T,\\ {} v({c_{j}})\in {W_{{c_{j}}}},\hspace{2.5pt}v({c_{j}})\geqslant 0,\hspace{1em}& j=1,2,\dots ,n,\end{array}\right.\end{array}\]4.2 A New Algorithm
5 Case Study and Comparison Analysis
5.1 A Case Study
Table 1
${c_{1}}$ | ${c_{2}}$ | ${c_{3}}$ | ${c_{4}}$ | |
${a_{1}}$ | $[[{s_{5}},{s_{5}}],(0.2,0.7)]$ | $[[{s_{2}},{s_{3}}],(0.4,0.6)]$ | $[[{s_{5}},{s_{6}}],(0.5,0.5)]$ | $[[{s_{3}},{s_{4}}],(0.2,0.6)]$ |
${a_{2}}$ | $[[{s_{4}},{s_{5}}],(0.4,0.6)]$ | $[[{s_{5}},{s_{5}}],(0.4,0.5)]$ | $[[{s_{3}},{s_{4}}],(0.1,0.8)]$ | $[[{s_{4}},{s_{4}}],(0.5,0.5)]$ |
${a_{3}}$ | $[[{s_{3}},{s_{4}}],(0.2,0.7)]$ | $[[{s_{4}},{s_{4}}],(0.2,0.7)]$ | $[[{s_{4}},{s_{5}}],(0.3,0.7)]$ | $[[{s_{4}},{s_{5}}],(0.2,0.7)]$ |
${a_{4}}$ | $[[{s_{6}},{s_{6}}],(0.5,0.4)]$ | $[[{s_{2}},{s_{3}}],(0.2,0.8)]$ | $[[{s_{3}},{s_{4}}],(0.2,0.6)]$ | $[[{s_{3}},{s_{3}}],(0.3,0.6)]$ |
Table 2
${c_{1}}$ | ${c_{2}}$ | ${c_{3}}$ | ${c_{4}}$ | |
${a_{1}}$ | $[[{s_{4}},{s_{4}}],(0.1,0.7)]$ | $[[{s_{3}},{s_{4}}],(0.2,0.7)]$ | $[[{s_{3}},{s_{4}}],(0.2,0.8)]$ | $[[{s_{6}},{s_{6}}],(0.4,0.5)]$ |
${a_{2}}$ | $[[{s_{5}},{s_{6}}],(0.4,0.5)]$ | $[[{s_{3}},{s_{4}}],(0.3,0.6)]$ | $[[{s_{4}},{s_{5}}],(0.2,0.6)]$ | $[[{s_{3}},{s_{4}}],(0.2,0.7)]$ |
${a_{3}}$ | $[[{s_{4}},{s_{5}}],(0.2,0.6)]$ | $[[{s_{4}},{s_{4}}],(0.2,0.7)]$ | $[[{s_{2}},{s_{3}}],(0.4,0.6)]$ | $[[{s_{3}},{s_{4}}],(0.3,0.7)]$ |
${a_{4}}$ | $[[{s_{5}},{s_{5}}],(0.3,0.6)]$ | $[[{s_{4}},{s_{5}}],(0.4,0.5)]$ | $[[{s_{2}},{s_{3}}],(0.3,0.6)]$ | $[[{s_{4}},{s_{4}}],(0.2,0.6)]$ |
Table 3
${c_{1}}$ | ${c_{2}}$ | ${c_{3}}$ | ${c_{4}}$ | |
${a_{1}}$ | $[[{s_{5}},{s_{5}}],(0.2,0.6)]$ | $[[{s_{3}},{s_{4}}],(0.3,0.7)]$ | $[[{s_{4}},{s_{5}}],(0.4,0.5)]$ | $[[{s_{4}},{s_{4}}],(0.2,0.7)]$ |
${a_{2}}$ | $[[{s_{4}},{s_{5}}],(0.3,0.7)]$ | $[[{s_{5}},{s_{5}}],(0.3,0.6)]$ | $[[{s_{2}},{s_{3}}],(0.1,0.8)]$ | $[[{s_{3}},{s_{4}}],(0.4,0.6)]$ |
${a_{3}}$ | $[[{s_{4}},{s_{4}}],(0.2,0.7)]$ | $[[{s_{5}},{s_{5}}],(0.3,0.6)]$ | $[[{s_{1}},{s_{3}}],(0.1,0.8)]$ | $[[{s_{4}},{s_{4}}],(0.2,0.7)]$ |
${a_{4}}$ | $[[{s_{3}},{s_{4}}],(0.2,0.7)]$ | $[[{s_{3}},{s_{4}}],(0.1,0.7)]$ | $[[{s_{4}},{s_{5}}],(0.3,0.6)]$ | $[[{s_{5}},{s_{5}}],(0.4,0.5)]$ |
(37)
\[ \begin{array}{l}{\varphi ^{\ast }}=\min -0.0139\big({\mu ^{1}}({e_{1}})-{\mu ^{1}}({e_{2}},{e_{3}})\big)+0.0153\big({\mu ^{1}}({e_{2}})\\ {} \phantom{{\varphi ^{\ast }}=}-{\mu ^{1}}({e_{1}},{e_{3}})\big)-0.0014\big({\mu ^{1}}({e_{3}})-{\mu ^{1}}({e_{1}},{e_{2}})\big)+0.5055,\\ {} \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l}{\mu ^{1}}({e_{1}},{e_{2}},{e_{3}})=1\\ {} {\mu ^{1}}(S)\leqslant {\mu ^{1}}(T),\hspace{1em}\forall S,T\subseteq \{{e_{1}},{e_{2}},{e_{3}}\},S\subseteq T,\\ {} {\mu ^{1}}({e_{1}})\in [0.3,0.5],\hspace{1em}{\mu ^{1}}({e_{2}})\in [0.2,0.3],\hspace{1em}{\mu ^{1}}({e_{3}})\in [0.25,0.4].\end{array}\right.\end{array}\]Table 4
${c_{1}}$ | ${c_{2}}$ | ${c_{3}}$ | ${c_{4}}$ | |
${a_{1}}$ | $[[{s_{5.0000}},{s_{5.0000}}],(0.2000,0.6750)]$ | $[[{s_{2.6000}},{s_{3.6000}}],(0.3400,0.6600)]$ | $[[{s_{3.5000}},{s_{4.5000}}],(0.2800,0.7100)]$ | $[[{s_{4.7000}},{s_{4.7000}}],(0.2700,0.6300)]$ |
${a_{2}}$ | $[[{s_{4.2000}},{s_{5.2000}}],(0.3500,0.6300)]$ | $[[{s_{5.0000}},{s_{5.0000}}],(0.3400,0.5600)]$ | $[[{s_{2.7000}},{s_{3.7000}}],(0.1000,0.8000)]$ | $[[{s_{3.3000}},{s_{4.0000}}],(0.4300,0.5700)]$ |
${a_{3}}$ | $[[{s_{3.5000}},{s_{4.0000}}],(0.2000,0.7000)]$ | $[[{s_{4.3000}},{s_{4.3000}}],(0.2300,0.6700)]$ | $[[{s_{3.4000}},{s_{4.4000}}],(0.3300,0.6700)]$ | $[[{s_{3.6500}},{s_{4.5500}}],(0.2350,0.7000)]$ |
${a_{4}}$ | $[[{s_{4.5000}},{s_{5.000}}],(0.3500,0.5500)]$ | $[[{s_{3.0300}},{s_{4.0000}}],(0.1800,0.6800)]$ | $[[{s_{2.7000}},{s_{3.7000}}],(0.2300,0.60000)]$ | $[[{s_{3.9000}},{s_{3.9000}}],(0.3450,0.5550)]$ |
(38)
\[ \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l}v(C)=1,\\ {} v(S)\leqslant v(T),\hspace{1em}\forall S,T\subseteq C\hspace{2.5pt}\text{s.t.}\hspace{2.5pt}S\subseteq T,\\ {} v({c_{1}})\in [0.3,0.4],\hspace{1em}v({c_{2}})\in [0.15,0.25],\\ {} v({c_{3}})\in [0.2,0.25],\hspace{1em}v({c_{4}})\in [0.25,0.3].\end{array}\right.\]Table 5
Methods | Final values of ${a_{1}}$ | Final values of ${a_{2}}$ | Final values of ${a_{4}}$ | Final values of ${a_{4}}$ | Orders |
The first method in Liu and Jin (2012) | ${s_{1.2100}}$ | ${s_{1.3900}}$ | ${s_{1.0400}}$ | ${s_{1.2600}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
The second method in Liu and Jin (2012) | ${s_{1.2160}}$ | ${s_{1.4840}}$ | ${s_{1.0440}}$ | ${s_{1.3360}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
The method in Chen and Li (2017) using the IULCWA operator | ${s_{1.7427}}$ | ${s_{1.5160}}$ | ${s_{1.1814}}$ | ${s_{1.7295}}$ | ${\tilde{a}_{1}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{2}}\succ {\tilde{a}_{3}}$ |
The method in Chen and Li (2017) using the IULCGM operator | ${s_{1.5622}}$ | ${s_{1.3579}}$ | ${s_{1.0842}}$ | ${s_{1.5397}}$ | ${\tilde{a}_{1}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{2}}\succ {\tilde{a}_{3}}$ |
The TODIM method in Liu and Teng (2015) with = 1 | ${\xi _{1}}=0.8415$ | ${\xi _{2}}=1$ | ${\xi _{3}}=0$ | ${\xi _{4}}=0.9606$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
The method in Liu and Shi (2015) using the LULFPEWA operator | ${s_{2.2140}}$ | ${s_{2.4010}}$ | ${s_{1.9940}}$ | ${s_{2.2510}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
The method in Liu and Shi (2015) using the LULFPEWG operator | ${s_{0.7660}}$ | ${s_{0.9540}}$ | ${s_{0.6750}}$ | ${s_{0.8310}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
The method in Liu et al. (2014a) using the IULWAHM operator with $p=q=1$ | ${s_{1.3600}}$ | ${s_{1.5500}}$ | ${s_{1.1100}}$ | ${s_{1.4400}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
The method in Liu et al. (2014a) using the IULWGHM operator with $p=q=1$ | ${s_{1.3100}}$ | ${s_{1.4800}}$ | ${s_{1.1100}}$ | ${s_{1.3700}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
New method using the IULSCA operator | ${s_{-2.2898}}$ | ${s_{-1.7581}}$ | ${s_{-1.7423}}$ | ${s_{-1.0985}}$ | ${\tilde{a}_{4}}\succ {\tilde{a}_{3}}\succ {\tilde{a}_{2}}\succ {\tilde{a}_{1}}$ |
New method using the IULCM operator | ${s_{2.2352}}$ | $s{s_{1.8555}}$ | ${s_{1.7419}}$ | ${s_{1.0924}}$ | ${\tilde{a}_{4}}\succ {\tilde{a}_{3}}\succ {\tilde{a}_{2}}\succ {\tilde{a}_{1}}$ |
New method using the GSIULSCA operator | ${s_{1.6480}}$ | ${s_{0.9880}}$ | ${s_{1.8952}}$ | ${s_{0.9977}}$ | ${\tilde{a}_{2}}\succ {\tilde{a}_{4}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{3}}$ |
New method using the GSIULSCGM operator | ${s_{1.6575}}$ | ${s_{1.0760}}$ | ${s_{1.8905}}$ | ${s_{1.0165}}$ | ${\tilde{a}_{4}}\succ {\tilde{a}_{3}}\succ {\tilde{a}_{1}}\succ {\tilde{a}_{2}}$ |
5.2 Comparison Analysis
-
(ii) The new method is based on the new operators that overall reflect the interactions among weights of elements, while previous methods cannot;
-
(iii) The new method can address the situations where the weighting information is partly known or completely unknown, while previous methods are based on the assumption that the weighting information is completely known.