Pub. online:15 Oct 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 119–143
Abstract
The objective of the paper is to introduce a novel approach using the multi-attribute border approximation area comparison (MABAC) approach under intuitionistic fuzzy sets (IFSs) to solve the smartphone selection problem with incomplete weights or completely unknown weights. A novel discrimination measure of IFSs is proposed to calculate criteria weights. In view of the fact that the ambiguity is an unavoidable feature of multiple-criteria decision-making (MCDM) problems, the proposed approach is an innovative process in the decision-making under uncertain settings. To express the utility and strength of the developed approach for solving problems in the area of MCDM, a smartphone selection problem is demonstrated. To validate the IF-MABAC approach, a comparative discussion is made between the outcomes of the developed and those of the existing methods. The outcomes of analysis demonstrate that the introduced method is well-ordered and effective with the existing ones.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 4 (2018), pp. 801–824
Abstract
In this paper, we investigate green supplier evaluation and selection problems within the interval 2-tuple linguistic environment. Based on the operational laws and comparison rule of interval 2-tuple linguistic variables, we develop some new aggregation operators, such as the interval 2-tuple hybrid averaging (ITHA) operator, the interval 2-tuple ordered weighted averaging-weighted averaging (ITOWAWA) operator and the interval 2-tuple hybrid geometric (ITHG) operator. Then, an approach for green supplier evaluation and selection under the context of interval 2-tuple linguistic variables is proposed based on the developed interval 2-tuple linguistic hybrid aggregation operators. Finally, a practical application to the green supplier selection problem of an automobile manufacturer is presented to reveal the potentiality and aptness of the proposed green supplier selection approach. According to the findings, the supplier number ‘five’ got the highest rank, out of the five alternative green suppliers. The approach proposed in this paper may help managers and business professionals to evaluate and select the optimal green supplier by considering the importance degrees of both the given arguments and their ordered positions. Furthermore, it is able to take different scenarios into account and provide a more complete picture to the decision maker by using different hybrid aggregation operators.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 4 (2018), pp. 773–800
Abstract
Green supplier selection has recently become one of the key strategic considerations in green supply chain management, due to regulatory requirements and market trends. It can be regarded as a multi-criteria group decision-making (MCGDM) problem, in which a set of alternatives are evaluated with respect to multiple criteria. MCGDM methods based on Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are widely used in solving green supplier selection problems. However, the classic AHP must conduct large amounts of pairwise comparisons to derive a consistent result due to its complex structure. Meanwhile, the classic TOPSIS only considers one single negative idea solution in selecting suppliers, which is insufficiently cautious. In this study, an improved TOPSIS integrated with Best-Worst Method (BWM) is developed to solve MCGDM problems with intuitionistic fuzzy information in the context of green supplier selection. The BWM is investigated to derive criterion weights, and the improved TOPSIS method is proposed to obtain decision makers’ weights in terms of different criteria. Moreover, the developed TOPSIS-based coefficient is used to rank alternatives. Finally, a green supplier selection problem in the agri-food industry is presented to validate the proposed approach followed by sensitivity and comparative analyses.
Journal:Informatica
Volume 27, Issue 4 (2016), pp. 767–798
Abstract
The 2-tuple linguistic computational model is an important tool to deal with linguistic information. To extend the application of hesitant fuzzy linguistic term sets and avoid information loss, this paper introduces hesitant fuzzy 2-tuple linguistic term sets that are expressed by using several symbolic numbers in . Considering the order relationship between hesitant fuzzy 2-tuple linguistic term sets, measures of expected value and variance are defined. Meanwhile, several induced generalized hesitant fuzzy 2-tuple linguistic aggregation operators are defined, by which the comprehensive attribute values of alternatives can be obtained. Then, models for the optimal weight vector on a decision maker set, on an attribute set and on their ordered sets are constructed, respectively. Furthermore, an approach to multi-granularity group decision making with hesitant fuzzy linguistic information is developed. Finally, an example is selected to illustrate the feasibility and practicality of the proposed procedure.
Journal:Informatica
Volume 25, Issue 2 (2014), pp. 327–360
Abstract
We present a new aggregation operator called the generalized ordered weighted proportional averaging (GOWPA) operator based on an optimal model with penalty function, which extends the ordered weighted geometric averaging (OWGA) operator. We investigate some properties and different families of the GOWPA operator. We also generalize the GOWPA operator. The key advantage of the GOWPA operator is that it is an aggregation operator with theoretic basis on aggregation, which focuses on its structure and importance of arguments. Moreover, we propose an orness measure of the GOWPA operator and indicate some properties of this orness measure. Furthermore, we introduce the generalized least squares method (GLSM) to determine the GOWPA operator weights based on its orness measure. Finally, we present a numerical example to illustrate the new approach in an investment selection decision making problem.