Pub. online:17 Jun 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 2 (2022), pp. 365–397
Abstract
Blockchain is gaining traction for improving the security of healthcare applications, however, it does not become a silver bullet as various security threats are observed in blockchain-based applications. Moreover, when performing the security risk management (SRM) of blockchain-based applications, there are conceptual ambiguities and semantic gaps that hinder from treating the security threats effectively. To address these issues, we present a blockchain-based healthcare security ontology (HealthOnt) that offers coherent and formal information models to treat security threats of traditional and blockchain-based applications. We evaluate the ontology by performing the SRM of a back-pain patient’s healthcare application case. The results show that HealthOnt can support the iterative process of SRM and can be continually updated when new security threats, vulnerabilities, or countermeasures emerge. In addition, the HealthOnt may assist in the modelling and analysis of real-world situations while addressing important security concerns from the perspective of stakeholders. This work can help blockchain developers, practitioners, and other associated stakeholders to develop secure blockchain-based healthcare applications in the early stages.
Journal:Informatica
Volume 32, Issue 3 (2021), pp. 583–618
Abstract
Policy-makers are often hesitant to invest in unproven solutions because of a lack of the decision-making framework for managing innovations as a portfolio of investments that balances risk and return, especially in the field of developing new technologies. This study provides a new portfolio matrix for decision making of policy-makers to identify IoT applications in the agriculture sector for future investment based on two dimensions of sustainable development as a return and IoT challenge as a risk using a novel MADM approach. To this end, the identified applications of IoT in the agriculture sector fall into eight areas using the meta-synthesis method. The authors extracted a set of criteria from the literature. Later, the fuzzy Delphi method helped finalise it. The authors extended the SWARA method with interval-valued triangular fuzzy numbers (IVTFN SWARA) and used it to the weighting of the characteristics. Then, the alternatives were rated using the Additive Ratio Assessment (ARAS) method based on interval-valued triangular fuzzy numbers (IVTFN ARAS). Finally, decision-makers evaluated the results of ratings based on two dimensions of sustainability and IoT challenge by developing a framework for decision-making. Results of this paper show that policy-makers can manage IOT innovations in a disciplined way that balances risk and return by a portfolio approach, simultaneously the proposed framework can be used to determine and prioritise the areas of IoT application in the agriculture sector.