Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 33, Issue 1 (2022)
  4. MultiPharm-DT: A Multi-Objective Decisio ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

MultiPharm-DT: A Multi-Objective Decision Tool for Ligand-Based Virtual Screening Problems
Volume 33, Issue 1 (2022), pp. 55–80
S. Puertas-Martín ORCID icon link to view author S. Puertas-Martín details   J.L. Redondo ORCID icon link to view author J.L. Redondo details   M.R. Ferrández ORCID icon link to view author M.R. Ferrández details   H. Pérez-Sánchez ORCID icon link to view author H. Pérez-Sánchez details   P.M. Ortigosa ORCID icon link to view author P.M. Ortigosa details  

Authors

 
Placeholder
https://doi.org/10.15388/21-INFOR469
Pub. online: 17 December 2021      Type: Research Article      Open accessOpen Access

Received
1 June 2021
Accepted
1 December 2021
Published
17 December 2021

Abstract

Ligand Based Virtual Screening methods are used to screen molecule databases to select the most promising compounds for a query. This is performed by decision-makers based on the information of the descriptors, which are usually processed individually. This methodology leads to a lack of information and hard post-processing dependent on the expert’s knowledge that can end up in the discarding of promising compounds. Consequently, in this work, we propose a new multi-objective methodology called MultiPharm-DT where several descriptors are considered simultaneously and whose results are offered to the decision-maker without effort on their part and without relying on their expertise.

References

 
Baize, S., Pannetier, D., Oestereich, L., Rieger, T., Koivogui, L., Magassouba, N.F., Soropogui, B., Sow, M.S., Këita, S., De Clerck, H., Tiffany, A., Dominguez, G., Loua, M., Traoré, A., Kolié, M., Malano, E.R., Heleze, E., Bocquin, A., Mély, S., Raoul, H., Caro, V., Cadar, D., Gabriel, M., Pahlmann, M., Tappe, D., Schmidt-Chanasit, J., Impouma, B., Diallo, A.K., Formenty, P., Van Herp, M., Günther, S. (2014). Emergence of Zaire Ebola virus disease in Guinea. New England Journal of Medicine, 371(15), 1418–1425.
 
Banegas-Luna, A.J., Cerón-Carrasco, J.P., Puertas-Martín, S., Pérez-Sánchez, H. (2019). BRUSELAS: HPC generic and customizable software architecture for 3D ligand-based virtual screening of large molecular databases. Journal of Chemical Information and Modeling, 59(6), 2805–2817.
 
Boström, J., Grant, J.A., Fjellström, O., Thelin, A., Gustafsson, D. (2013). Potent fibrinolysis inhibitor discovered by shape and electrostatic complementarity to the drug tranexamic acid. Journal of Medicinal Chemistry, 56(8), 3273–3280.
 
Böttcher, C.J.F., Bordewijk, P. (1978). Theory of Electric Polarization. Elsevier Science Limited, Amsterdam.
 
Brooijmans, N., Kuntz, I.D. (2003). Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure, 32(1), 335–373.
 
Case, D.A., Cerutti, D.S., Cheatham, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Greene, D., Homeyer, N., Izadi, S., Kovalenko, A., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D., Merz, K.M., Monard, G., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D.R., Roitberg, A., Sagui, C., Simmerling, C.L., Botello-Smith, W.M., Swails, J., Walker, R.C., Wang, J., Wolf, R.M., Wu, X., Xiao, L., York, D.M., Kollman, P.A. (2017). AMBER. University of California, San Francisco.
 
Chu, S., Gochin, M. (2013). Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorganic & Medicinal Chemistry Letters, 23(18), 5114–5118.
 
Coello, C.A.C., Lamont, G.B. (2004). Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore.
 
Cui, L., Wang, Y., Liu, Z., Chen, H., Wang, H., Zhou, X., Xu, J. (2015). Discovering new acetylcholinesterase inhibitors by mining the Buzhongyiqi decoction recipe data. Journal of Chemical Information and Modeling, 55(11), 2455–2463.
 
Cui, Y., Geng, Z., Zhu, Q., Han, Y. (2017). Multi-objective optimization methods and application in energy saving. Energy, 125, 681–704.
 
Deb, K., Sindhya, K., Hakanen, J. (2016). Multi-objective optimization. In: Decision Sciences. CRC Press, United States, pp. 145–184.
 
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
 
Durillo, J.J., Nebro, A.J. (2011). jMetal: a java framework for multi-objective optimization. Advances in Engineering Software, 42, 760–771.
 
Ferrández, M.R., Puertas-Martín, S., Redondo, J.L., Ivorra, B., Ramos, A.M., Ortigosa, P.M. (2019). High-performance computing for the optimization of high-pressure thermal treatments in food industry. The Journal of Supercomputing, 75(3), 1187–1202.
 
Grant, J.A., Pickup, B.T. (1995). A Gaussian description of molecular shape. The Journal of Physical Chemistry, 99(11), 3503–3510.
 
Grant, J.A., Gallardo, M.A., Pickup, B.T. (1996). A fast method of molecular shape comparison: a simple application of a gaussian description of molecular shape. Journal of Computational Chemistry, 17(14), 1653–1666.
 
Halgren, T.A. (1995). Potential energy functions. Current Opinion in Structural Biology, 5(2), 205–210.
 
Hamza, A., Wei, N.-N., Zhan, C.-G. (2012). Ligand-based virtual screening approach using a new scoring function. Journal of Chemical Information and Modeling, 52(4), 963–974.
 
Hawkins, P.C.D.D., Skillman, A.G., Nicholls, A. (2007). Comparison of shape-matching and docking as virtual screening tools. Journal of Medicinal Chemistry, 50(1), 74–82.
 
Hevener, K.E., Mehboob, S., Su, P.-C., Truong, K., Boci, T., Deng, J., Ghassemi, M., Cook, J.L., Johnson, M.E. (2012). Discovery of a novel and potent class of F. Tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. Journal of Medicinal Chemistry, 55(1), 268–279.
 
Hughes, J.P., Rees, S., Kalindjian, S.B., Philpott, K.L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249.
 
Kaoud, T.S., Yan, C., Mitra, S., Tseng, C.-C., Jose, J., Taliaferro, J.M., Tuohetahuntila, M., Devkota, A., Sammons, R., Park, J., Park, H., Shi, Y., Hong, J., Ren, P., Dalby, K.N. (2012). From in silico discovery to intracellular activity: targeting JNK-protein interactions with small molecules. ACS Medicinal Chemistry Letters, 3(9), 721–725.
 
Kar, S., Roy, K. (2013). How far can virtual screening take us in drug discovery? Expert Opinion on Drug Discovery, 8(3), 245–261.
 
Karelson, M. (2000). Molecular descriptors in QSAR/QSPR. Wiley-Interscience, New York.
 
Kim, E.-S.S., Cho, H., Lim, C., Lee, J.-Y.Y., Lee, D.-I.I., Kim, S., Moon, A., Kim, E.-S.S., Cho, H., Lim, C., Lee, J.-Y.Y., Lee, D.-I.I., Moon, A. (2015). A natural piper-amide-like compound NED-135 exhibits a potent inhibitory effect on the invasive breast cancer cells. Chemico-Biological Interactions, 237, 58–65.
 
Kim, Y.C., Dema, B., Reyes-Sandoval, A. (2020). COVID-19 vaccines: breaking record times to first-in-human trials. npj Vaccines, 5(1), 34.
 
Kossmann, B.R., Abdelmalak, M., Lopez, S., Tender, G., Yan, C., Pommier, Y., Marchand, C., Ivanov, I. (2016). Discovery of selective inhibitors of Tyrosyl-DNA phosphodiesterase 2 by targeting the enzyme DNA-binding cleft. Bioorganic and Medicinal Chemistry Letters, 26(14), 3232–3236.
 
Kumar, A., Zhang, K.Y.J. (2016). Application of shape similarity in pose selection and virtual screening in CSARdock2014 exercise. Journal of Chemical Information and Modeling, 56(6), 965–973.
 
Leelananda, S.P., Lindert, S. (2016). Computational methods in drug discovery. Beilstein Journal of Organic Chemistry, 12, 2694–2718.
 
Li, H., Zhang, Q. (2008). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302.
 
Lo, Y.-C., Senese, S., Damoiseaux, R., Torres, J.Z. (2016). 3D chemical similarity networks for structure-based target prediction and scaffold hopping. ACS Chemical Biology, 11(8), 2244–2253.
 
López-Ramos, M., Perruccio, F. (2010). HPPD: ligand- and target-based virtual screening on a herbicide target. Journal of Chemical Information and Modeling, 50(5), 801–814.
 
Lu, I.-L., Huang, C.-F., Peng, Y.-H., Lin, Y.-T., Hsieh, H.-P., Chen, C.-T., Lien, T.-W., Lee, H.-J., Mahindroo, N., Prakash, E., et al.(2006). Structure-based drug design of a novel family of PPARgamma partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. Journal of Medicinal Chemistry, 49(9), 2703–2712.
 
Maccari, G., Jaeger, T., Moraca, F., Biava, M., Flohé, L., Botta, M. (2011). A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase. Bioorganic and Medicinal Chemistry Letters, 21(18), 5255–5258.
 
Marler, R.T., Arora, J.S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.
 
Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034.
 
Morris, G.M., Lim-Wilby, M. (2008). Molecular docking. In: Kukol, A. (Ed.), Molecular Modeling of Proteins, Vol. 443. Humana Press, Clifton, N.J., pp. 365–382.
 
Nicolaou, C.A., Brown, N. (2013). Multi-objective optimization methods in drug design. Drug Discovery Today: Technologies, 10(3), 427–435.
 
OpenEye Scientific Software (2018). VIDA 4.4.0.4. Santa Fe, NM. https://www.eyesopen.com.
 
OpenEye Scientific Software (2020). EON. Santa Fe, NM. https://www.eyesopen.com.
 
OpenEye Scientific Software (2021). ROCS. Santa Fe, NM. https://www.eyesopen.com.
 
Pagadala, N.S., Syed, K., Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91–102.
 
Pardalos, P.M., Žilinskas, A., Žilinskas, J. (2017). Non-Convex Multi-Objective Optimization. Springer International Publishing, New York.
 
Petersen, L.R., Jamieson, D.J., Powers, A.M., Honein, M.A. (2016). Zika virus. New England Journal of Medicine, 374(16), 1552–1563.
 
Puertas-Martín, S., Redondo, J.L., Ortigosa, P.M., Pérez-Sánchez, H. (2019). OptiPharm: an evolutionary algorithm to compare shape similarity. Scientific Reports, 9(1), 1398.
 
Puertas-Martín, S., Redondo, J.L., Pérez-Sánchez, H., Ortigosa, P.M. (2020). Optimizing electrostatic similarity for virtual screening: a new methodology. Informatica, 31(4), 821–839.
 
Real, R., Vargas, J.M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45(3), 380–385.
 
Stark, J.L., Powers, R. (2011). Application of NMR and molecular docking in structure-based drug discovery. NMR of Proteins and Small Biomolecules, 1–34.
 
Tanrikulu, Y., Krüger, B., Proschak, E. (2013). The holistic integration of virtual screening in drug discovery. Drug Discovery Today, 18(7-8), 358–364.
 
Tapia, M.G.C., Coello, C.A.C. (2007). Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: 2007 IEEE Congress on Evolutionary Computation. IEEE, Singapore, pp. 532–539.
 
Tollman, P. (2001). A Revolution in R & D: How Genomics and Genetics are Transforming the Biopharmaceutical Industry. Boston Consulting Group, Boston, US.
 
Tresadern, G., Bemporad, D., Howe, T. (2009). A comparison of ligand based virtual screening methods and application to corticotropin releasing factor 1 receptor. Journal of Molecular Graphics and Modelling, 27(8), 860–870.
 
Wang, Z., Lu, Y., Seibel, W., Miller, D.D., Li, W. (2009). Identifying novel molecular structures for advanced melanoma by ligand-based virtual screening. Journal of Chemical Information and Modeling, 49(6), 1420–1427.
 
Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), 1074–1082.
 
Woodring, J.L., Bachovchin, K.A., Brady, K.G., Gallerstein, M.F., Erath, J., Tanghe, S., Leed, S.E., Rodriguez, A., Mensa-Wilmot, K., Sciotti, R.J., Pollastri, M.P. (2017). Optimization of physicochemical properties for 4-anilinoquinazoline inhibitors of trypanosome proliferation. European Journal of Medicinal Chemistry, 141, 446–459.
 
Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., Xu, J. (2013). Enhancing molecular shape comparison by weighted Gaussian functions. Journal of Chemical Information and Modeling, 53(8), 1967–1978.
 
Zhang, Q., Li, H. (2007). MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.
 
Zitzler, E., Laumanns, M., Thiele, L. (2001). SPEA2: improving the strength pareto evolutionary algorithm. Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, 95–100.

Biographies

Puertas-Martín S.
https://orcid.org/0000-0001-8956-1733
savinspm@ual.es

S. Puertas-Martín is a PhD at the Informatics Department at the University of Almería, Spain. His publications and more information about him can be found on https://www.scopus.com/authid/detail.uri?authorId=57201417677. His research interests are drug discovery, global optimization and high performance computing.

Redondo J.L.
https://orcid.org/0000-0003-2826-1635
jlredondo@ual.es

M.R. Ferrández is a PhD at the Informatics Department at the University of Almería, Spain. She obtained her PhD from the University of Almería. Her publications can be found on https://www.scopus.com/authid/detail.uri?authorId=57201429990. Her research interests include high-performance computing, global optimization, food treatment and disease analysis.

Ferrández M.R.
https://orcid.org/0000-0002-1311-1346
mrferrandez@ual.es

J.L. Redondo is a professor at the Informatics Department at the University of Almería, Spain. She obtained her PhD from the University of Almería. Her publications can be found on https://www.scopus.com/authid/detail.uri?authorId=35206862500. Her research interests include high performance computing, global optimization and applications.

Pérez-Sánchez H.
https://orcid.org/0000-0003-4468-7898
hperez@ucam.edu

P.M. Ortigosa is a full professor at the Informatics Department at the University of Almería, Spain. She obtained her PhD from the University of Málaga. Her publications can be found on https://www.scopus.com/authid/detail.uri?authorId=6602759441. Her research interests include high performance computing, global optimization and applications.

Ortigosa P.M.
https://orcid.org/0000-0001-6514-6543
ortigosa@ual.es

H. Pérez-Sánchez is the principal investigator of the Structural Bioinformatics and High Performance Computing (BIO-HPC) research group at the Universidad Católica de Murcia (UCAM), Spain. He obtained his PhD from the University of Murcia. His publications can be found on https://www.scopus.com/authid/detail.uri?authorId=12767397700. His research interests include high performance computing, structural bioinformatics and physical chemistry.


Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2022 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
ligand-based virtual screening multi-objective optimization decision tool

Funding
This work was supported by the Spanish Ministry of Economy and Competitiveness through the CTQ2017-87974-R, RTI2018-095993-B-I00 and EQC2019-006418-P grants; by the Junta de Andalucía through the grant Proyectos de excelencia (P18-RT-1193), by the Programa Regional de Fomento de la Investigación (Plan de Actuación 2018, Región de Murcia, Spain) through the: “Ayudas a la realización de proyectos para el desarrollo de investigación científica y técnica por grupos competitivos (20988/PI/18)” grant; by the University of Almeria throught the grant: “Ayudas a proyectos de investigación I+D+I en el marco del Programa Operativo FEDER 2014-20” (UAL18-TIC-A020-B).

Metrics
since January 2020
1613

Article info
views

770

Full article
views

694

PDF
downloads

174

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy