Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 31, Issue 4 (2020)
  4. Series with Binomial-Like Coefficients f ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Series with Binomial-Like Coefficients for Evaluation and 3D Visualization of Zeta Functions
Volume 31, Issue 4 (2020), pp. 659–680
Igoris Belovas   Martynas Sabaliauskas  

Authors

 
Placeholder
https://doi.org/10.15388/20-INFOR434
Pub. online: 9 November 2020      Type: Research Article      Open accessOpen Access

Received
1 June 2019
Accepted
1 October 2020
Published
9 November 2020

Abstract

In this paper, we continue the study of efficient algorithms for the computation of zeta functions on the complex plane, extending works of Coffey, Šleževičienė and Vepštas. We prove a central limit theorem for the coefficients of the series with binomial-like coefficients used for evaluation of the Riemann zeta function and establish the rate of convergence to the limiting distribution. An asymptotic expression is derived for the coefficients of the series. We discuss the computational complexity and numerical aspects of the implementation of the algorithm. In the last part of the paper we present our results on 3D visualizations of zeta functions, based on series with binomial-like coefficients. 3D visualizations illustrate underlying structures of surfaces and 3D curves associated with zeta functions.

References

 
Arias de Reyna, J. (2011). High precision computation of Riemann’s zeta function by the Riemann–Siegel formula. Mathematics of Computation, 80(274), 995–1009. https://doi.org/10.1090/S0025-5718-2010-02426-3.
 
Belovas, I. (2019a). A central limit theorem for coefficients of the modified Borwein method for the calculation of the Riemann zeta-function. Lithuanian Mathematical Journal, 59(1), 17–23. https://doi.org/10.1007/s10986-019-09421-4.
 
Belovas, I. (2019b). A local limit theorem for coefficients of modified Borwein’s method. Glasnik Matematički, 54(74), 1–9. https://doi.org/10.3336/gm.54.1.01.
 
Belovas, I., Sakalauskas, L. (2018). Limit theorems for the coefficients of the modified Borwein method for the calculation of the Riemann zeta-function values. Colloquium Mathematicum, 151(2), 217–227. https://doi.org/10.4064/cm7086-2-2017.
 
Bolshev, L.N., Smirnov, N.V. (1983). Tablitsy matematicheskoj statistiki. Nauka, Moscow (in Russian).
 
Borwein, P. (2000). An efficient algorithm for the Riemann zeta function. In: Constructive, Experimental, and Nonlinear Analysis, Limoges, 1999, CMS Conference Proceedings,Vol. 27. American Mathematical Society, Providence, RI, pp. 29–34.
 
Borwein, J.M., Bradley, D.M., Crandall, R.E. (2000). Computational strategies for the Riemann zeta function. Journal of Computational and Applied Mathematics, 121(1–2), 247–296. https://doi.org/10.1016/S0377-0427(00)00336-8.
 
Coffey, M.W. (2009). An efficient algorithm for the Hurwitz zeta and related functions. Journal of Computational and Applied Mathematics, 225(2), 338–346. https://doi.org/10.1016/j.cam.2008.07.040.
 
Fischer, K. (2017). The Zetafast algorithm for computing zeta functions. arXiv:1703.01414.
 
Garunkštis, R., Šimėnas, R. (2015). On the Speiser equivalent for the Riemann hypothesis. European Journal of Mathematics, 1(2), 337–350. https://doi.org/10.1007/s40879-014-0033-1.
 
Gradshteyn, I.S., Ryzhik, I.M. (2014). Table of Integrals, Series, and Products (8th ed.). Academic Press.
 
Hwang, H.-K. (1998). On convergence rates in the central limit theorems for combinatorial structures. European Journal of Combinatorics, 19(3), 329–343. https://doi.org/10.1006/eujc.1997.0179.
 
Kaczorowski, J., Kulas, M. (2007). On the non-trivial zeros off the critical line for L-functions from the extended Selberg class. Monatshefte für Mathematik, 150(3), 217–232. https://doi.org/10.1007/s00605-006-0412-x.
 
Lerch, M. (1897). Expressions nouvelles de la constante d’Euler, Věstník Královské české společnosti náuk. Tř. mathematicko-přírodovědecká, 42, 1–5.
 
Šleževičienė, R. (2004). An efficient algorithm for computing Dirichlet L-functions. Journal Integral Transforms and Special Functions, 15(6), 513–522. https://doi.org/10.1080/1065246042000272072.
 
Stopple, J. (2017). Lehmer pairs revisited. Experimental Mathematics, 26(1), 45–53. https://doi.org/10.1080/10586458.2015.1107870.
 
Vepštas, L. (2008). An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions. Numerical Algorithms, 47(3), 211–252. https://doi.org/10.1007/s11075-007-9153-8.
 
West, G. (2005). Better approximations to cumulative normal functions. Wilmott Magazine, 70–76.

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2020 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
zeta functions asymptotic normality limit theorem efficient algorithms 3D visualization

Metrics
since January 2020
1385

Article info
views

823

Full article
views

856

PDF
downloads

242

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy