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Abstract. In this paper, we continue the study of efficient algorithms for the computation of zeta
functions on the complex plane, extending works of Coffey, Šleževičienė and Vepštas. We prove a
central limit theorem for the coefficients of the series with binomial-like coefficients used for evalu-
ation of the Riemann zeta function and establish the rate of convergence to the limiting distribution.
An asymptotic expression is derived for the coefficients of the series. We discuss the computational
complexity and numerical aspects of the implementation of the algorithm. In the last part of the pa-
per we present our results on 3D visualizations of zeta functions, based on series with binomial-like
coefficients. 3D visualizations illustrate underlying structures of surfaces and 3D curves associated
with zeta functions.
Key words: zeta functions, asymptotic normality, limit theorem, efficient algorithms,
3D visualization.

1. Introduction

Zeta functions are very important, playing a pivotal role in the analytic number theory.
Properties of zeta functions are essential in the distribution of primes. Prime numbers, in
turn, have a broad spectrum of applications, ranging from quantum mechanics to informa-
tion security (e.g. RSA and the Diffie–Hellman key exchange algorithms or elliptic-curve
cryptography). Investigating zeta functions numerically, one needs an algorithm enabling
to effectively compute numerous values over the complex plane, not only in the critical
strip or on the critical line.

In this paper, we continue the study of efficient algorithms for the computation of
zeta functions, extending works of Borwein (2000), Šleževičienė (2004), Vepštas (2008)
and Coffey (2009). These algorithms allow the computation of zeta functions over the
complex plane. The idea of the method comes from the alternating series convergence and
properties of Chebyshev polynomials. The algorithm is nearly optimal in the sense that
there is no sequence of n-term exponential polynomials that can converge to a zeta func-
tion very much faster than those of the algorithm (see, e.g. Theorem 3.1 in Borwein, 2000,
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Theorem 5 in Šleževičienė, 2004). The algorithm steps aside for the Riemann–Siegel for-
mula based algorithms (Arias de Reyna, 2011) for computations concerning zeroes on the
critical line, where multiple low precision evaluations are required. However, it is more ef-
ficient than Euler–Maclaurin based algorithms for arbitrary precision computations (note
that the Riemann–Siegel formula permits to approximate ζ(σ + it) in the critical strip for
large values of t with a number of terms proportional to

√
t , while Euler–Maclaurin based

algorithms require a number of terms proportional to t , cf. Borwein et al., 2000; Borwein,
2000). Belovas obtained central (Belovas, 2019a) and local (Belovas, 2019b) limit the-
orems, which allowed to introduce an asymptotic approximation for coefficients of the
algorithm, providing a considerable speedup in calculations (Belovas and Sakalauskas,
2018).

In the present study, we develop a modification of a globally convergent series for the
Riemann zeta function and establish a limit theorem for coefficients of the modified series.
We specify the rate of convergence to the limiting distribution, identify the error term and
discuss computational complexity. The algorithm is applied to produce 3D visualizations,
illustrating underlying structures of surfaces and 3D curves associated with zeta functions.

The paper is organized as follows. The first part is the introduction. In the second part,
we introduce a modification of Lerch’s series. In the auxiliary third part, we establish
double ordinary and double semi-exponential generating functions for coefficients of the
modified series. The proof of the validity of the modification is presented in the fourth
section. In the fifth part of the research, we establish analytic expressions of coefficients
of the series. In the sixth section, we establish a limit theorem for coefficients and specify
the rate of convergence to the limiting distribution. In the seventh section, we prove a
theorem for the error term of the series and consider the computational complexity of the
method. The numerical aspects of the technique are discussed in the eighth part of the
paper. The ninth section of the study is devoted to 3D visualizations of zeta functions and
the Riemann hypothesis.

Throughout this paper, we denote by �(x) the cumulative distribution function of the
standard normal distribution, and by �(x) we denote the corresponding tail distribution
�(x) = 1 − �(x). E(X) stands for the expected value of a random variable X. �(s)

denotes the gamma function. Ck
n are the binomial coefficients. �x� and �x� stand for the

floor function and the ceiling functions respectively. A×B stands for the Cartesian product
of two sets A and B. All limits, unless specified, are taken as n → ∞.

2. Series with Binomial-Like Coefficients

Let s = σ + it be a complex variable. The Riemann zeta function is defined by

ζ(s) =
∞∑

n=1

1

ns
=

∏
p∈P

(
1 − 1

ps

)−1

,
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Table 1
Numbers ank (3) form a triangular array.

0 1 2 3 4 5 . . .

0 1 0 0 0 0 0 . . .

1 3 1 0 0 0 0 . . .

2 7 4 1 0 0 0 . . .

3 15 11 5 1 0 0 . . .

4 31 26 16 6 1 0 . . .

5 63 57 42 22 7 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

for σ > 1, and by analytic continuation elsewhere except for a simple pole at s = 1. Let
us consider a globally convergent series with binomial-like coefficients for the Riemann
zeta function.

Theorem 1. For s �= 1 + 2iπm/ log 2, m ∈ Z,

ζ(s) = 1

1 − 21−s
lim

n→∞

n∑
k=0

(−1)k

(k + 1)s
qnk, (1)

here

qnk = ank

2n+1 . (2)

Coefficients ank satisfy a class of triangular arrays and are defined by the following re-
current expression: for n, k ∈ N,

ank = an−1,k−1 + an−1,k, (3)

where a00 = 1, ank = 0 if n < k, and an0 = 2an−1,0 + 1 if n > 0 (cf. Table 1).

It is significant to note that though the partial difference equation (3) bears a close
resemblance to the partial difference equation of the binomial coefficients, coefficients
ank are not symmetric, because of different boundary conditions. Indeed, the coefficients
are decreasing by k for any fixed n. In order to investigate the underlying structure of these
numbers, we introduce the double ordinary and the double semi-exponential generating
functions (this aspect will be dealt in detail in Section 3).

The series (1) is a modification of the globally convergent series for the Riemann zeta
function, first given by Lerch (1897),

ζ(s) = 1

1 − 21−s

∞∑
n=0

1

2n+1

n∑
k=0

(−1)kCk
n

(k + 1)s
. (4)

Borwein studied a similar series with binomial-like coefficients, rapidly convergent
and well-suited for high precision numerical calculations (Borwein, 2000; Belovas
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and Sakalauskas, 2018) introduced an improved version of his algorithm. Vepštas
(2008) and Coffey (2009) developed efficient algorithms for Hurwitz zeta function,
while Šleževičienė (2004) adapted Borwein’s result for Dirichlet L-functions. These al-
gorithms, using series with binomial-like coefficients, are nearly optimal in the sense that
there is no sequence of n-term exponential polynomials that can converge to the Riemann
zeta function on an interval much faster that those of the algorithms (cf. Theorem 3.1
in Borwein, 2000 and Theorem 5 in Šleževičienė, 2004). In present paper we extend the
study of this class of algorithms. We begin by examining the generating functions of the
coefficients of the series (1).

3. Generating Functions of the Coefficients of the Series

In this section we establish the double ordinary generating function

G(x, y) =
∞∑

n=0

∞∑
k=0

ankx
nyk =

∞∑
n=0

n∑
k=0

ankx
nyk (5)

and the double semi-exponential generating function

F(x, y) =
∞∑

n=0

∞∑
k=0

ank

xn

n! y
k =

∞∑
n=0

n∑
k=0

ank

xn

n! y
k (6)

for the coefficients (3). First we will prove an auxiliary lemma for the boundary generating
functions.

Lemma 1. Coefficients ank have the boundary ordinary generating function G0(x) and
the boundary exponential generating function F0(x) as follows:

(i) G0(x) :=G(x, 0) = (
(1 − 2x)(1 − x)

)−1
, (7)

(ii) F0(x) :=F(x, 0) = 2e2x − ex. (8)

Proof. Let us consider the formal series (5) of the double ordinary generating function
(note that ank = 0 for n < k),

G(x, y) =
∞∑

n=0

n∑
k=0

ankx
nyk = a00︸︷︷︸

=1

+
∞∑

n=1

an0x
n +

∞∑
n=1

n∑
k=1

ankx
nyk.
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Hence, the boundary ordinary generating function equals

G0(x) = G(x, 0) = 1 +
∞∑

n=1

an0x
n = 1 +

∞∑
n=1

(2an−1,0 + 1)xn

= 2
∞∑

n=1

an−1,0x
n +

∞∑
n=0

xn = 2x

∞∑
n=0

an0x
n

︸ ︷︷ ︸
=G0(x)

+ 1

1 − x
.

Thereby, statement (i) of the lemma follows.
Next, take a look at the formal series (6) of the double semi-exponential generating

function,

F(x, y) =
∞∑

n=0

n∑
k=0

ank

xn

n! y
k = a00︸︷︷︸

=1

+
∞∑

n=1

an0
xn

n! +
∞∑

n=1

n∑
k=1

ank

xn

n! y
k.

Thus, the boundary exponential generating function equals

F0(x) = F(x, 0) = 1 +
∞∑

n=1

an0
xn

n! = 1 +
∞∑

n=1

(2an−1,0 + 1)
xn

n!

= 1 + 2
∞∑

n=1

an−1,0
xn

n! +
∞∑

n=1

xn

n! = 2
∞∑

n=0

an,0
xn+1

(n + 1)! + ex.

Differentiating, we receive

F ′
0(x) = 2

∞∑
n=0

an,0
xn

n! + ex,

and, as a result, the linear differential equation

F ′
0(x) − 2F0(x) = ex

with the initial condition F0(0) = 1. Indeed,

F0(0) = a00 +
∞∑

n=1

n∑
k=1

ank

xn

n! y
k|(0,0) = 1.

Solving the ordinary differential equation, we obtain statement (ii) of the lemma.

Lemma 2. Coefficients ank have the double ordinary generating function G(x, y) and
the semi-exponential generating function F(x, y) as follows:

(i) G(x, y) = (
(1 − 2x)

(
1 − x(y + 1)

))−1
, (9)

(ii) F(x, y) = (
2e2x − (1 + y)e(y+1)x

)
(1 − y)−1. (10)
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Proof. Let us take the double ordinary generating function (5). Substituting the expres-
sion (3) into the generating function, we get

G(x, y) = 1 +
∞∑

n=1

an0x
n +

∞∑
n=1

∞∑
k=1

ankx
nyk

= G0(x) +
∞∑

n=1

∞∑
k=1

an−1,k−1x
nyk +

∞∑
n=1

∞∑
k=1

an−1,kx
nyk

= G0(x) + xyG(x, y) + x
(
G(x, y) − G0(x)

)
.

Thus,

G(x, y) = G0(x)(1 − x)
((

1 − x(y + 1)
))−1

. (11)

By substituting (7) into (11) we obtain statement (i) of the lemma.
Next, turn to the double semi-exponential generating function (6). Substituting the

recurrent expression (3) into the generating function, we have that

F(x, y) =
∞∑

n=1

n∑
k=1

an−1,k−1
xn

n! y
k +

∞∑
n=1

n∑
k=1

an−1,k

xn

n! y
k +

∞∑
n=0

an0
xn

n!

=
∞∑

n=0

n∑
k=0

ank

xn+1

(n + 1)!y
k+1

︸ ︷︷ ︸
=y

∫ x
0 Fdt

+
∞∑

n=0

n∑
k=0

ank

xn+1

(n + 1)!y
k

︸ ︷︷ ︸
=∫ x

0 Fdt

−
∞∑

n=0

an0
xn+1

(n + 1)!︸ ︷︷ ︸
=∫ x

0 F0dt

+
∞∑

n=0

an0
xn

n!︸ ︷︷ ︸
=F0

.

Therefore, by statement (ii) of Lemma 1, we obtain that

F = (y + 1)

∫ x

0
Fdt −

∫ x

0
F0dt︸ ︷︷ ︸

=e2x−ex

+ F0︸︷︷︸
=2e2x−ex

= (y + 1)

∫ x

0
Fdt + e2x.

Calculating the partial derivative by x, we get the first-order linear partial differential
equation,

F ′
x − (y + 1)F = 2e2x,

with the initial condition F |x=0 = 1. Indeed, by (6), we get

F(0, y) = a00 +
∞∑

n=1

n∑
k=1

ank

xn

n! y
k
∣∣∣
x=0

= 1.
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Solving the partial differential equation (note that we can solve it as an ordinary one), we
obtain statement (ii) of the lemma.

4. Analytic Expressions of the Coefficients of the Series

The recurrent formula (3) is often inconvenient in practical computations, thus it is pur-
poseful to seek an analytic expression or an asymptotic expansion. We may view (3) as
a partial difference equation with constant coefficients. In this section we will establish
analytic expressions for the coefficients ank , using the double ordinary and the semi-
exponential generating functions from (see Lemma 2). The coefficients ank can be ex-
pressed by linear combinations of binomial coefficients or by the incomplete beta func-
tion.

Lemma 3. The following analytic expressions are equivalent:

(i) ank =
n∑

j=k

2n−jCk
j ,

(ii) ank =
n+1∑

j=k+1

C
j

n+1, (12)

(iii) ank = 2n+1I1/2(k + 1, n − k + 1).

Here Ix(a, b) stands for the regularized incomplete beta function:

Ix(a, b) =
∫ x

0 ta−1(1 − t)b−1dt∫ 1
0 ta−1(1 − t)b−1dt

.

Proof. Formal Taylor series in two variables for generating functions G(x, y) and
F(x, y), defined by formulas (5) and (6), are equal to

G(x, y) =
∞∑

n=0

∞∑
k=0

(
∂n+k

∂xn∂yk
G(x, y)

∣∣∣∣
(0,0)

)
xnyk

n!k!

and

F(x, y) =
∞∑

n=0

∞∑
k=0

(
∂n+k

∂xn∂yk
F (x, y)

∣∣∣∣
(0,0)

)
xnyk

n!k! ,



666 I. Belovas, M. Sabaliauskas

respectively. Statements (i) and (ii) of the lemma are obtained by partial differentiation of
the generating functions at (0, 0). By proposition (i) of Lemma 2, we have that

ank = 1

n!k!
∂n+k

∂xn∂yk
G(x, y)

∣∣∣∣
(0,0)

= 1

n!k!
∂n

∂xn

1

1 − 2x

k!xk

(1 − x(y + 1))k+1

∣∣∣∣
(0,0)

= 1

n!
n∑

j=0

C
j
n

(
xk

)(j)
(

1

(1 − 2x)(1 − x(y + 1))k+1

)(n−j)
∣∣∣∣∣
(0,0)

= 1

(n − k)!
n−k∑
j=0

C
j
n−k

(
1

1 − 2x

)(j) (
1

(1 − x(y + 1))k+1

)(n−k−j)
∣∣∣∣∣
(0,0)

=
n−k∑
j=0

1

j !(n − k − j)!j !2j (k + 1)(k + 2) . . . (n − j) =
n−k∑
j=0

2jCk
n−j .

Next, using proposition (ii) of Lemma 2, we get

ank = 1

k!
∂n+k

∂xn∂yk
F (x, y)

∣∣∣∣
(0,0)

= 1

k!
∂k

∂yk

2n+1e2x − (1 + y)n+1e(y+1)x

1 − y

∣∣∣∣∣
(0,0)

= 1

k!
k∑

j=0

C
j
k

∂j

∂yj
2n+1e2x − (1 + y)n+1e(y+1)x

∣∣∣∣
(0,0)

∂k−j

∂yk−j

1

1 − y

∣∣∣∣
(0,0)

= −
k∑

j=1

1

j !
j∑

i=0

Ci
j

∂i

∂yi
(1 + y)n+1

∣∣∣∣∣∣
(0,0)

∂j−i

∂yj−i
e(y+1)x

∣∣∣
(0,0)

+ 2n+1 − 1

= −
k∑

j=1

(n + 1)!
j !(n + 1 − j)! + 2n+1 − 1 = 2n+1 −

k∑
j=0

C
j

n+1 =
n+1∑

j=k+1

C
j

n+1. (13)

The third statement of the lemma follows from the formula for the distribution of the
probabilities in the Bernoulli scheme (see (19) on page 27 in Bolshev and Smirnov, 1983),

n∑
k=m

Ck
npk(1 − p)n−k = Ip(m, n − m + 1).

Substituting p = 1/2, n = r + 1 and m = j + 1, we have that

I1/2(j + 1, r − j + 1) = 2−r−1
r+1∑

k=j+1

Ck
r+1.
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Thus (cf. (13)),

n+1∑
j=k+1

C
j

n+1

︸ ︷︷ ︸
=ank

= 2n+1I1/2(k + 1, n − k + 1),

concluding the proof.

Remark 1. The first and the second statements of Lemma 3 also can be proved by the
direct application of the definition (3) (or by induction). However, these approaches do
not reveal the underlying nature of the numbers ank .

Now we can proceed with the proof of Theorem 1.

5. Proof of Theorem 1

Proof. Consider Lerch’s series (4) for the Riemann zeta function

ζ(s) = 1

1 − 21−s

∞∑
n=0

n∑
k=0

1

2n+1

(−1)kCk
n

(k + 1)s
.

Changing the order of the summation in the double sum and applying the first statement
of Lemma 3 (12), we obtain that

ζ(s) = 1

1 − 21−s

∞∑
k=0

∞∑
n=k

1

2n+1

(−1)kCk
n

(k + 1)s

= 1

1 − 21−s
lim

N→∞

N∑
k=0

(−1)k

(k + 1)s

N∑
n=k

Ck
n

2n+1

= 1

1 − 21−s
lim

N→∞

N∑
k=0

(−1)k

(k + 1)s
2−N−1

N∑
n=k

2N−nCk
n

︸ ︷︷ ︸
=aNk

yielding us the statement of the theorem.

6. Limit Theorem for the Coefficients of the Series and the Rate of Convergence to
the Limiting Distribution

We will use Hwang’s result on convergence rates in central limit theorems for combinato-
rial structures (see Theorem 7 and Corollary 2 in Section 4 in Hwang, 1998) to establish
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the limit theorem for qnk coefficients and specify the rate of convergence to the limiting
distribution.

Theorem 2. (See Hwang, 1998.) Let Pn(z) be a probability generating function of the
random variable �n, taking only non-negative integral values, with mean μn and variance
σ 2

n . Suppose that, for each fixed n � 1, Pn(z) is a Hurwitz polynomial. If σn → ∞, then
�n satisfies

P

(
�n − μn

σn

< x

)
= �(x) + O

(
1

σn

)
, x ∈ R. (14)

Let us formulate a central limit theorem.

Lemma 4. Suppose that Fn(x) is the cumulative distribution function of the random vari-
able An with the probability mass function

P(An = k) = Ck
n+1

2n+1 − 1
, k = 0, . . . , n, (15)

mean

μn = n

2

(
1 + 1

n
+ O

(
1

2n

))
(16)

and variance

σ 2
n = n

4

(
1 + 1

n
+ O

(
n

2n

))
. (17)

Then it holds

Fn(σnx + μn) = �(x) + O

(
1√
n

)
, x ∈ R. (18)

Proof. Let us consider the moment generating function of the random variable An

Mn(s) = E
(
esAn

) =
∑

k

P (An = k)eks =
n∑

k=0

Ck
n+1e

ks

2n+1 − 1

= 1

2n+1 − 1

(n+1∑
k=0

Ck
n+1e

ks − es(n+1)

)
= (es + 1)n+1 − es(n+1)

2n+1 − 1
.

Calculating the derivatives of Mn(s), we obtain that

M ′
n(s) = n + 1

2n+1 − 1

((
es + 1

)n
es − es(n+1)

)
,

M ′′
n (s) = n + 1

2n+1 − 1

(
n
(
es + 1

)n−1
e2s + (

es + 1
)n

es − (n + 1)es(n+1)
)
.
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Hence,

μn = M
′
n(0) = (n + 1)(2n − 1)

2n+1 − 1
= n + 1

2

(
1 −

∞∑
k=1

(
1

2n+1

)k)

= n + 1

2

(
1 + O

(
1

2n

))
= n

2

(
1 + 1

n
+ O

(
1

2n

))

and

σ 2
n = M ′′

n (0) − (
M ′

n(0)
)2 = n + 1

(2n+1 − 1)2

(
22n − 2n−1(n + 2)

)

= n + 1

4

(
1 −

∞∑
k=1

kn + k − 1

2kn+k

)
= n

4

(
1 + 1

n
+ O

(
n

2n

))
,

granting us with estimates for the mean and the variance (cf. (16) and (17)). Note that
σn → ∞.

Next, let us examine the probability generating function of the random variable An

Pn(z) = E
(
zAn

) =
∑

k

P (An = k)zk =
n∑

k=0

Ck
n+1z

k

2n+1 − 1
= (z + 1)n+1 − zn+1

2n+1 − 1
. (19)

Hurwitz polynomial is a polynomial whose zeros are located in the left half-plane of the
complex plane or on the imaginary axis. Let us locate the roots of the polynomial (19).
Since z �= 0, we have that

(
z + 1

z

)n+1

= 1.

Calculating an nth root of unity, we obtain that

zk + 1

zk

= cos
2πk

n + 1
+ i sin

2πk

n + 1
, k = 0, . . . , n.

Thus, the roots of (19) are equal to

zk = −1

2
− i

2
cot

πk

n + 1
.

The real part of every root is negative. Hence, the probability generating function Pn(z)

is a Hurwitz polynomial. By Theorem 2, we have that

P

(
An − μn

σn

)
− �(x) = O

(
1

σn

)
= O

(
1√
n

)
,

yielding us the statement of the lemma.
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Now we can formulate the central limit theorem for the coefficients qnk .

Theorem 3. Under conditions of Lemma 4, the coefficients qnk satisfy

qnk = �

(
k − μn

σn

)
+ O

(
1√
n

)
. (20)

Proof. Note that the cumulative distribution function of the random variable An equals

Fn(σnx + μn) =
∑

j�σnx+μn

C
j

n+1

2n+1 − 1
.

Denoting k = �σnx + μn� and taking into account Lemma 4 and the equality (cf. (13))

ank

2n+1
= 1 −

k∑
j=0

C
j

n+1

2n+1
,

we obtain that

2n+1

2n+1 − 1

k∑
j=0

C
j

n+1

2n+1 = 2n+1

2n+1 − 1

(
1 − ank

2n+1

)
= �

(
k − μn

σn

)
+ O

(
1√
n

)
.

Thus,

ank

2n+1︸ ︷︷ ︸
=qnk

= 1 − 2n+1 − 1

2n+1
�

(
k − μn

σn

)
+ O

(
1√
n

)
︸ ︷︷ ︸

=�(
k−μn

σn
)+O( 1√

n
)

,

and the statement of the theorem follows.

7. Error Term of the Series and the Computational Complexity

Let us investigate the error term of the series (1).

Theorem 4. For σ > 0 and s �= 1 + 2iπm/ log 2, m ∈ Z,

ζ(s) = 1

1 − 21−s

n∑
k=0

(−1)k

(k + 1)s
qnk + ξn+1(s). (21)

Here

|ξn+1(s)| � (1 + |t |/σ)eπ |t |/2

2n+1|1 − 21−s | . (22)
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Proof. By (2.3) of Algorithm 1 in Borwein (2000), the error term of the series equals

ξn+1(s) = 1

pn+1(−1)(1 − 21−s)

1

�(s)

∫ 1

0

pn+1(x)| log x|s−1

1 + x
dx. (23)

By the definition of the coefficients of the series and the expression of the generating
function of the binomial coefficients, the polynomial pn+1(x) equals

pn+1(x) =
n+1∑
k=0

(−1)kCk
n+1x

k = (1 − x)n+1.

Thus, pn+1(−1) = 2n+1 and, for 0 < x < 1, we have 0 < pn+1(x) < 1. It follows

|ξn+1(s)| � 1

2n+1|1 − 21−s |
1

|�(s)|
∫ 1

0

(− log x)σ−1

1 + x
dx. (24)

For the integral factor, we have that

∫ 1

0

(− log x)σ−1

1 + x
dx �

∫ 1

0
(− log x)σ−1dx = �(σ). (25)

The product representation of the gamma function equals

∣∣∣∣�(σ)

�(s)

∣∣∣∣
2

=
∞∏

n=0

(
1 + t2

(σ + n)2

)
. (26)

The product representation of the hyperbolic sine equals

sinh πt = πt

∞∏
n=1

(
1 + t2

n2

)
. (27)

Combining (26) and (27), we get

∣∣∣∣�(σ)

�(s)

∣∣∣∣
2

=
(

1 + t2

σ 2

) ∞∏
n=1

(
1 + t2

(σ + n)2

)
�

(
1 + t2

σ 2

)
sinh π |t |

π |t | . (28)

Next, combining (24), (25) and (28), we obtain that

|ξn+1(s)| � 1

2n+1|1 − 21−s |
(

1 + t2

σ 2

)1/2( sinh π |t |
π |t |

)1/2

︸ ︷︷ ︸
�(1+|t |/σ )eπ |t |/2

, (29)

yielding us the statement of the theorem.
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Remark 2. For σ > 0 and s �= 1 + 2iπm/ log 2, m ∈ Z, the inequality

|ξn+1(s)| � 1

2n+1|1 − 21−s |
�(σ)

|�(s)| (30)

holds. Hence, to compute the Riemann zeta function with d decimal digits of accuracy,
the approach requires a number n of terms in the sum (21),

n =
⌊

log �(σ) − log |�(s)| + d log 10 − log |1 − 21−s |
log 2

⌋

=
⌊

log �(σ) − log |�(s)| + d log 10 − log
√

1 − 22−σ cos(t log 2) + 22−2σ

log 2

⌋

�
⌊

log �(σ) − log |�(σ + it)| + d log 10 − log |1 − 21−σ |
log 2

⌋
. (31)

Noticing that (cf. 8.328.1, Gradshteyn and Ryzhik, 2014),

lim
t→∞ |�(σ + it)|t 1

2 −σ e
π
2 t = √

2π,

we obtain, for fixed d and σ , that

n = πt

2 log 2

(
1 + O

(
log t

t

))
. (32)

For numerical purposes (if t is large enough, e.g. t > 0.2), we can choose n by the fol-
lowing approximate formula

n =
⌈

πt

2 log 2
+

(
1

2
− σ

)
log t

log 2
+ Cσ + Cd

⌉
. (33)

Here

Cσ = log �(σ) − log |1 − 21−σ |
log 2

, Cd = log 10

log 2
d − log 2π

2 log 2
.

8. Numerical Aspects

Apart from a certain theoretical interest, the representation (20) of qnk is pivotal in nu-
merical applications of the series (1), providing a considerable speedup in calculations.
It relieves the computer memory, circumvents the computation of the binomial coefficients
(i.e. time-consuming calculations of factorials). It allows us to cut the tails of the series.
We do not to calculate qnk while k → 0 and qnk → 1, and do not include corresponding
terms into the sum, while k → n and qnk → 0. The process is controlled by choosing
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Table 2
Time required to achieve six decimal digits of accuracy, [sec].

Alg. mod. H = 102 and (σ, t) ∈ 
i × T1 H = 103 and (σ, t) ∈ 
i × T2


0 × T1 
1 × T1 
2 × T1 
0 × T2 
1 × T2 
2 × T2

RE 0.38 0.36 0.31 293.55 298.09 290.84
BF 0.14 0.14 0.13 12.20 12.47 11.58
NA 0.05 0.05 0.05 4.16 4.41 4.07
REn1 0.18 0.18 0.16 90.20 97.51 87.74
BFn1 0.10 0.10 0.09 6.63 6.96 6.57
NAn1 0.04 0.04 0.04 2.37 2.53 2.38

the accuracy level ε. For the right tail, we have �((k − μn)/σn) > 1 − ε. Solving the
inequality we obtain that

n1 = �μn + z1−εσn�. (34)

For the left tail, we have n0 = �μn − z1−εσn�. Here zp is the quantile function of the
standard normal distribution.

The algorithm requires a number of terms n (32) to compute ζ(s) with d decimal
digits. However, the use of the asymptotic, proposed in Theorem 3, or analytic expression
(iii) of Lemma 3, allows us to select n adaptively, depending on accuracy required and t

given. This implies that there is no need to recalculate coefficients with every new s.
Naturally, a direct application of the recurrent equation (3) (if values are stored)

is faster, compared to straightforward repeated recalculations. However, this storage-
intensive approach is unattractive (note order of n2 storage).

In Table 2 we compare the performance of six modifications of the algorithm for the
computation of the Riemann zeta function, based on the series with binomial-like coeffi-
cients. Namely,

• Recurrent Expression (RE). The coefficients of the series (21) are calculated using
the recurrent expression (3). The number of terms n in the sum is obtained by applying
the approximation (33).

• Beta function (BF). The coefficients of the series (21) are calculated using the regu-
larized incomplete beta function (see (iii) of Lemma 3). The number of terms n in the
sum is obtained by applying the approximation (33).

• Normal approximation (NA). The coefficients of the series (21) are calculated us-
ing the asymptotic (20). The standard normal cumulative distribution function is ap-
proximated with a 16-digit precision using the fast computation algorithm proposed
by (West, 2005). The number of terms n in the sum is obtained by applying the approx-
imation (33).

• Recurrent Expression with n1 (REn1). The coefficients of the series (21) are calcu-
lated using the recurrent expression (3) and the number of terms n1 (34) in the sum.

• Beta function with n1 (BFn1). Coefficients of the series (21) are calculated using the
regularized incomplete beta function (see (iii) of Lemma 3) and the number of terms
n1 (34) in the sum.



674 I. Belovas, M. Sabaliauskas

• Normal approximation with n1 (NAn1). Coefficients of the series (21) are calculated
using the normal approximation (20) and the number of terms n1 (34) in the sum.

Let us denote the sets for σ : 
0 = (0.7), 
1 = (1/2, 1), 
2 = (1, 10) and for t : T1 =
(101, 102), T2 = (102, 103). We generate uniformly distributed samples of arguments
s = (σ, t) of the Riemann zeta function from the sets 
i × Tj . Here × stands for the
Cartesian product. Number H in Table 2 stands for the length of a sample. All calculations
were performed with i7-2600 CPU, 8 GB RAM (Python 3.6.3).

We can see that asymptotic-based modifications are 2–3 times faster than beta-based
modifications, while recurrence-based modifications have proved too computationally de-
manding for intensive practical use. Note that C++ version of the program would bring
more substantial benefits in speedup (cf. Belovas and Sakalauskas, 2018). Numerical ex-
periments have shown that processing 3D visualizations of surfaces and curves, associated
with zeta functions, the performance comparable with Zetafast algorithm (Fischer, 2017),
while the specified accuracy level does not exceed six decimal digits of accuracy and the
coefficients qnk for a mesh are precalculated.

9. 3D visualizations of Zeta Functios

Visualizing a complex function of a complex variable fC : C → C we have to bear in
mind that actually we are faced with a mapping of a 2D subspace to another 2D subspace –
an essentially four-dimensional problem fR : R2 → R

2. There are a lot of ways of us-
ing three dimensions to handle a 4D-structure. We can colour a complex function of a
complex variable according to the argument of the function, with the height representing
the modulus of the function. We have tried this approach and have found the visualiza-
tions unappealing. Our goal is to provide a clear visualization of underlying structures
of surfaces and 3D curves associated with zeta functions. Hence, we emphasize on the
visualization of 3D intersection lines between the real 
(ζ̃ ) and the imaginary �(ζ̃ ) sur-
faces of a zeta function, along with 2D lines of intersection between the real 
(ζ̃ ) and the
imaginary �(ζ̃ ) surfaces of a zeta function with the complex plane. We apply the afore-
mentioned algorithms to obtain illustrations, disclosing the placement of zeroes of a zeta
function under consideration, and as a result, enabling us to probe a hypothesis concerning
the distribution of zeroes visually. All graphs of zeta functions presented in this work are
generated using the normal approximation (NAk0) of the coefficients qnk . This algorithm
is chosen as the fastest.

The first two figures present two examples of 3D visualizations of the pattern of the
allocation of non-trivial zeros of the Riemann zeta function. Figure 1 illustrates the ini-
tial allocation (for (σ, t) ∈ (−1/2, 3/2) × (10, 35)). The first five non-trivial zeros are
indicated by cyan globes at the points of intersections of the real surface of the Riemann
zeta function (yellow surface), the imaginary surface of the Riemann zeta function (red
surface) and the critical line σ = 1/2.

Figure 2 visualizes a segment of the pattern, containing 91–100th non-trivial zeroes
of the Riemann zeta function (for (σ, t) ∈ (−1/2, 3/2) × (10, 35). The height is cut
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Fig. 1. Zeroes, 
ζ(s) and �ζ(s) surfaces for (σ, t) ∈ (−1/2, 3/2) × (10, 35).

Fig. 2. Zeroes, 
ζ(s) and �ζ(s) surfaces for (σ, t) ∈ (−1/2, 3/2) × (10, 35).

Fig. 3. 
ζ(s) and �ζ(s) surfaces for (σ, t) ∈ (−40, 10) × (−20, 100).

at the level of |
ζ(s)| � 5 and |�ζ(s)| � 5). Note close pairs of zeroes, resembling
Lehmer’s phenomenon (a set of pairs of zeros of the Riemann zeta function, that are close
to each other) (Stopple, 2017). It is an unsolved problem, whether there exist infinitely
many Lehmer pairs.

Figure 3 shows numerous ridges shaped by the real (yellow) and the imaginary (red)
surfaces of the Riemann zeta function (for (σ, t) ∈ (−40, 10) × (−20, 100)). The height
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Fig. 4. 2D curves corresponding the intersections of 
ζ(s) and �ζ(s) surfaces with the complex plane, (σ, t) ∈
(−40, 10) × (−20, 100).

Fig. 5. 
ζ(s) and �ζ(s) surfaces for (σ, t) ∈ (−40, 10) × (−20, 100).

is cut at the level of |
ζ(s)| � 5 and |�ζ(s)| � 5. Note the peak at the point of a simple
pole s = 1. Non-trivial zeros are indicated by small cyan balls. Trivial zeros are indicated
by green ones.

Figure 4 extends the visualization of the previous illustration, demonstrating a 2D pat-
tern of intersections of the real and the imaginary surfaces of the Riemann zeta function
with the complex plane. Non-trivial zeros are indicated by small cyan balls. Trivial zeros
are indicated by green ones.

Figure 5 shows a pattern of intersections of the real (yellow) and the imaginary (red)
surfaces of the Riemann zeta function (for (σ, t) ∈ (−40, 10) × (−20, 100)). The height
was cut at the level of |
ζ(s)| � 50 and |�ζ(s)| � 50. 3D intersection lines between the
real and the imaginary surfaces of the Riemann zeta function are highlighted (bold black).

Figure 6 extends the visualization of the previous illustration, revealing a knot of 3D
curves corresponding the intersections of the surfaces, while the surfaces themselves are
not shown.

Figure 7 presents a visualization of the Riemann hypothesis. We can see ribs, formed
by the intersections of the real and the imaginary surfaces of the Riemann zeta function,
going through the critical line (red) in the critical strip 0 < σ < 1 (green) at non-trivial
zero points (cyan balls).
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Fig. 6. 3D curves corresponding the intersections of 
ζ(s) and �ζ(s) surfaces for (σ, t) ∈ (−40, 10) ×
(−20, 100).

Fig. 7. 3D curves corresponding the intersections of 
ζ(s) and �ζ(s) surfaces in the critical strip.

The next visualizations present a counterexample to a “generalized Riemann hypothe-
sis”. Let us consider the linear combination of the Riemann zeta function and the Dirichlet
L-function (cf. Garunkštis and Šimėnas, 2015),

f (s, τ ) = (1 − τ)

(
1 +

√
5

5s

)
ζ(s) + τL(s, χ), (35)

where τ ∈ [0, 1] and L(s, χ) is the Dirichlet L-function (χ mod 5, χ(2) = −1). Hence,

L(s, χ) =
∞∑

n=1

χ(n)

ns
=

∞∑
n=1

(
1

(5n − 4)s
− 1

(5n − 3)s
− 1

(5n − 2)s
+ 1

(5n − 1)s

)
.

By the joint universality theorem for Dirichlet L-functions, it follows that for any 0 <

τ < 1 there are infinitely many zeros of f (s, τ ) in the strip 1/2 < σ < 1 (see Theorem 2
by Kaczorowski and Kulas, 2007).

Let us go with τ = 3/4. The 3D visualization in Fig. 8 shows the pattern of intersec-
tions of the real (yellow) and the imaginary (red) surfaces of the linear combination (35)
(for (σ, t) ∈ (−1, 2) × (1.65, 1.95)).
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Fig. 8. 
f (s, 3/4) and �f (s, 3/4) surfaces for (σ, t) ∈ (−1, 2) × (1.65, 1.95).

Fig. 9. 3D curves corresponding the intersections of 
f (s, 3/4) and �f (s, 3/4) surfaces in the critical strip.

Figure 9 demonstrates the intersections of 3D curves (corresponding the intersections
of the real and the imaginary surfaces of the linear combination (35)) with the complex
plane in the critical strip 0 < σ < 1 (while the surfaces themselves are not shown). We
can see two pairs of intersections in the critical strip (green) not belonging to the critical
line (blue).
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Garunkštis, R., Šimėnas, R. (2015). On the Speiser equivalent for the Riemann hypothesis. European Journal

of Mathematics, 1(2), 337–350. https://doi.org/10.1007/s40879-014-0033-1.
Gradshteyn, I.S., Ryzhik, I.M. (2014). Table of Integrals, Series, and Products (8th ed.). Academic Press.
Hwang, H.-K. (1998). On convergence rates in the central limit theorems for combinatorial structures. European

Journal of Combinatorics, 19(3), 329–343. https://doi.org/10.1006/eujc.1997.0179.
Kaczorowski, J., Kulas, M. (2007). On the non-trivial zeros off the critical line for L-functions from the extended

Selberg class. Monatshefte für Mathematik, 150(3), 217–232. https://doi.org/10.1007/s00605-006-0412-x.
Lerch, M. (1897). Expressions nouvelles de la constante d’Euler, Věstník Královské české společnosti náuk. Tř.

mathematicko-přírodovědecká, 42, 1–5.
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