An Extended Intuitionistic Fuzzy Multi-Attributive Border Approximation Area Comparison Approach for Smartphone Selection Using Discrimination Measures
Pub. online:29 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 311–339
Abstract
The extensions of ordinary fuzzy sets are problematic because they require decimal numbers for membership, non-membership and indecision degrees of an element from the experts, which cannot be easily determined. This will be more difficult when three or more digits’ membership degrees have to be assigned. Instead, proportional relations between the degrees of parameters of a fuzzy set extension will make it easier to determine the membership, non-membership, and indecision degrees. The objective of this paper is to present a simple but effective technique for determining these degrees with several decimal digits and to enable the expert to assign more stable values when asked at different time points. Some proportion-based models for the fuzzy sets extensions, intuitionistic fuzzy sets, Pythagorean fuzzy sets, picture fuzzy sets, and spherical fuzzy sets are proposed, including their arithmetic operations and aggregation operators. Proportional fuzzy sets require only the proportional relations between the parameters of the extensions of fuzzy sets. Their contribution is that these models will ease the use of fuzzy set extensions with the data better representing expert judgments. The imprecise definition of proportions is also incorporated into the given models. The application and comparative analyses result in that proportional fuzzy sets are easily applied to any problem and produce valid outcomes. Furthermore, proportional fuzzy sets clearly showed the role of the degree of indecision in the ranking of alternatives in binomial and trinomial fuzzy sets. In the considered car selection problem, it has been observed that there are minor changes in the ordering of intuitionistic and spherical fuzzy sets.
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 709–739
Abstract
A p-rung orthopair fuzzy set (p-ROFS) describes a generalization of intuitionistic fuzzy set and Pythagorean fuzzy set in the case where we face a larger representation space of acceptable membership grades, and moreover, it gives a decision maker more flexibility in expressing his/her real preferences. Under the p-rung orthopair fuzzy environment, we are going to propose a novel and parametrized score function of p-ROFSs by incorporating the idea of weighted average of the degree of membership and non-membership functions. In view of this fact, this study is further undertaken to investigate and present different properties of the proposed score function for p-ROFSs. Moreover, we indicate that this ranking technique reduces some of the drawbacks of the existing ones. Eventually, we develop an approach based on the above-mentioned ranking technique to deal with multiple criteria decision making problems with p-rung orthopair fuzzy information.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 4 (2018), pp. 773–800
Abstract
Green supplier selection has recently become one of the key strategic considerations in green supply chain management, due to regulatory requirements and market trends. It can be regarded as a multi-criteria group decision-making (MCGDM) problem, in which a set of alternatives are evaluated with respect to multiple criteria. MCGDM methods based on Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are widely used in solving green supplier selection problems. However, the classic AHP must conduct large amounts of pairwise comparisons to derive a consistent result due to its complex structure. Meanwhile, the classic TOPSIS only considers one single negative idea solution in selecting suppliers, which is insufficiently cautious. In this study, an improved TOPSIS integrated with Best-Worst Method (BWM) is developed to solve MCGDM problems with intuitionistic fuzzy information in the context of green supplier selection. The BWM is investigated to derive criterion weights, and the improved TOPSIS method is proposed to obtain decision makers’ weights in terms of different criteria. Moreover, the developed TOPSIS-based coefficient is used to rank alternatives. Finally, a green supplier selection problem in the agri-food industry is presented to validate the proposed approach followed by sensitivity and comparative analyses.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 4 (2017), pp. 725–748
Abstract
Compared to fuzzy numbers, intuitionistic fuzzy numbers provide greater opportunities for solving complex decision-making problems, especially when they are related to ambiguities, uncertainties and vagueness. However, their use is more complex, especially when it comes to ordinary users. Therefore, in this paper an approach adopted for evaluating alternatives on the basis of a smaller number of some more complex evaluation criteria is proposed. The approach is based on the use of linguistic variables, triangular intuitionistic fuzzy numbers, and the Hamming distance. At the end, a case study of hotels’ websites evaluation is given to demonstrate the practicality and effectiveness of the proposed approach, together with its limitations and weaknesses. Additionally, a new procedure for ranking intuitionistic fuzzy numbers is proposed and its use is verified.
Journal:Informatica
Volume 5, Issues 1-2 (1994), pp. 31–42
Abstract
A multiple criteria decision support system has been developed and implemented on the personal computer. Three interactive methods of increasing complexity are realized. The main applications of the system were in the scope of decisions on the best energy development strategy for Lithuania.