Pub. online:24 Mar 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 3 (2022), pp. 573–592
Abstract
Aimed at achieving the accurate restoration of Poissonian images that exhibit neat edges and no staircase effect, this article develops a novel hybrid nonconvex double regularizer model. The proposed scheme closely takes the advantages of total variation with overlapping group sparsity and nonconvex high-order total variation priors. The overlapping group sparsity is adopted to globally suppress the staircase artifacts, while the nonconvex high-order regularization plays the role of locally preserving the significant image features and edge details. Computationally, a quite efficient alternating direction method of multipliers, associated with the iteratively reweighted ${\ell _{1}}$ algorithm and the majorization-minimization method, is employed to settle the optimization problem iteratively. Finally, exhaustive simulation experiments are executed for recovering Poissonian images, which are made comparisons with several state-of-the-art restoration strategies, indicate the brilliant performance of our model in terms of intuitive effects and accuracy evaluation.
Journal:Informatica
Volume 31, Issue 3 (2020), pp. 539–560
Abstract
In this paper, we present an effective algorithm for solving the Poisson–Gaussian total variation model. The existence and uniqueness of solution for the mixed Poisson–Gaussian model are proved. Due to the strict convexity of the model, the split-Bregman method is employed to solve the minimization problem. Experimental results show the effectiveness of the proposed method for mixed Poisson–Gaussion noise removal. Comparison with other existing and well-known methods is provided as well.
Journal:Informatica
Volume 22, Issue 3 (2011), pp. 383–394
Abstract
In this paper we have proposed a novel method for image denoising using local polynomial approximation (LPA) combined with the relative intersection of confidence intervals (RICI) rule. The algorithm performs separable column-wise and row-wise image denoising (i.e., independently by rows and by columns), combining the obtained results into the final image estimate. The newly developed method performs competitively among recently published state-of-the-art denoising methods in terms of the peak signal-to-noise ratio (PSNR), even outperforming them for small to medium noise variances for images that are piecewise constant along their rows and columns.