The vessel extraction is very important for the vascular disease diagnosis and grading of the stenoses and aneurysms in vessels. This aids in brain surgery and making angioplasty. The presence of noise in the MRA image, etc., turns the vessel extraction into a difficult problem. In this paper, we derive a vessel extraction algorithm based on TFA and EMS algorithms. We prove the convergence of the proposed method within a few iterations. Results of applying the presented method on real 2D MRA images demonstrate that our method is very efficient.
Voting systems are as useful as people are willing to use them. Although many electronic election schemes have been proposed through the years, and some real case scenarios have been tested, people still do not trust electronic voting. Voting is not only about technological challenges but also about credibility, therefore, we propose a voting system focused on trust. We introduce political parties as active partners in the elections as a mechanism to encourage more traditional electors to participate. The system we propose here preserves elector’s privacy, it operates publicly through a blockchain and it is auditable by third parties.
In this work, we propose a novel framework based on Generative Adversarial Networks for pose face augmentation (PFA-GAN). It enables a controlled pose synthesis of a new face image from a source face given a driving one while preserving the identity of the source face. We introduce a method for training the framework in a fully self-supervised mode using a large-scale dataset of unconstrained face images. Besides, some augmentation strategies are presented to expand the training set. The face verification experimental results demonstrate the effectiveness of the presented augmentation strategies as all augmented datasets outperform the baseline.
The data-driven approach is popular to automate learning of fuzzy rules and tuning membership function parameters in fuzzy inference systems (FIS) development. However, researchers highlight different challenges and issues of this FIS development because of its complexity. This paper evaluates the current state of the art of FIS development complexity issues in Computer Science, Software Engineering and Information Systems, specifically: 1) What complexity issues exist in the context of developing FIS? 2) Is it possible to systematize existing solutions of identified complexity issues? We have conducted a hybrid systematic literature review combined with a systematic mapping study that includes keyword map to address these questions. This review has identified the main FIS development complexity issues that practitioners should consider when developing FIS. The paper also proposes a framework of complexity issues and their possible solutions in FIS development.
Industry 4.0 solutions are composed of autonomous engineered systems where heterogeneous agents act in a choreographed manner to create complex workflows. Agents work at low-level in a flexible and independent manner, and their actions and behaviour may be sparsely manipulated. Besides, agents such as humans tend to show a very dynamic behaviour and processes may be executed in a very anarchic, but correct way. Thus, innovative, and more flexible control techniques are required. In this work, supervisory control techniques are employed to guarantee a correct execution of distributed and choreographed processes in Industry 4.0 scenarios. At prosumer level, processes are represented using soft models where logic rules and deformation indicators are used to analyse the correctness of executions. These logic rules are verified using specific engines at business level. These engines are fed with deformation metrics obtained through tensor deformation functions at production level. To apply deformation functions, processes are represented as discrete flexible solids in a phase space, under external forces representing the variations in every task’s inputs. The proposed solution presents two main novelties and original contributions. On the one hand, the innovative use of soft models and deformation indicators allows the implementation of this control solution not only in traditional industrial scenarios where rigid procedures are followed, but also in other future engineered applications. On the other hand, the original integration of logic rules and events makes possible to control any kind of device, including those which do not have an explicit control plane or interface. Finally, to evaluate the performance of the proposed solution, an experimental validation using a real pervasive computing infrastructure is carried out.
Anti-cancer immunotherapy dramatically changes the clinical management of many types of tumours towards less harmful and more personalized treatment plans than conventional chemotherapy or radiation. Precise analysis of the spatial distribution of immune cells in the tumourous tissue is necessary to select patients that would best respond to the treatment. Here, we introduce a deep learning-based workflow for cell nuclei segmentation and subsequent immune cell identification in routine diagnostic images. We applied our workflow on a set of hematoxylin and eosin (H&E) stained breast cancer and colorectal cancer tissue images to detect tumour-infiltrating lymphocytes. Firstly, to segment all nuclei in the tissue, we applied the multiple-image input layer architecture (Micro-Net, Dice coefficient (DC) $0.79\pm 0.02$). We supplemented the Micro-Net with an introduced texture block to increase segmentation accuracy (DC = $0.80\pm 0.02$). We preserved the shallow architecture of the segmentation network with only 280 K trainable parameters (e.g. U-net with ∼1900 K parameters, DC = $0.78\pm 0.03$). Subsequently, we added an active contour layer to the ground truth images to further increase the performance (DC = $0.81\pm 0.02$). Secondly, to discriminate lymphocytes from the set of all segmented nuclei, we explored multilayer perceptron and achieved a 0.70 classification f-score. Remarkably, the binary classification of segmented nuclei was significantly improved (f-score = 0.80) by colour normalization. To inspect model generalization, we have evaluated trained models on a public dataset that was not put to use during training. We conclude that the proposed workflow achieved promising results and, with little effort, can be employed in multi-class nuclei segmentation and identification tasks.
This study introduces an approach in three phases to cover the disadvantages of the FMEA method including inability to assign different importance to risk factors and incomplete prioritization in uncertain environment. First, the values of Risk Priority Number (RPN) are set through the FMEA method. Then, the Step-wise Weight Assessment Ratio Analysis based on the Z-Number theory (Z-SWARA) method has been done to determine the weights of quintuplet factor. Finally, failures are prioritized using Multi-Objective Optimization by Ratio Analysis based on the Z-number theory (Z-MOORA). The results of implementation of the proposed approach by considering uncertainty and reliability represent a complete prioritization.
It is a challenging task to prevent the staircase effect and simultaneously preserve sharp edges in image inpainting. For this purpose, we present a novel nonconvex extension model that closely incorporates the advantages of total generalized variation and edge-enhancing nonconvex penalties. This improvement contributes to achieve the more natural restoration that exhibits smooth transitions without penalizing fine details. To efficiently seek the optimal solution of the resulting variational model, we develop a fast primal-dual method by combining the iteratively reweighted algorithm. Several experimental results, with respect to visual effects and restoration accuracy, show the excellent image inpainting performance of our proposed strategy over the existing powerful competitors.
Blockchain is a decentralized database, which can protect the safety of trade and avoid double payment. Due to the widespread attention of researchers, the studies of this field have increased sharply in recent years. It is meaningful to reveal the development level and trends based on this literature. This paper adopts bibliometric methods to study the collaboration characteristics from the levels of author, institution and country. Furthermore, several kinds of collaboration networks and their centrality analysis are also presented, which not only display the development level and collaboration degree but also the evolution of author collaboration modes in different phases.
The objective of the paper is to introduce a novel approach using the multi-attribute border approximation area comparison (MABAC) approach under intuitionistic fuzzy sets (IFSs) to solve the smartphone selection problem with incomplete weights or completely unknown weights. A novel discrimination measure of IFSs is proposed to calculate criteria weights. In view of the fact that the ambiguity is an unavoidable feature of multiple-criteria decision-making (MCDM) problems, the proposed approach is an innovative process in the decision-making under uncertain settings. To express the utility and strength of the developed approach for solving problems in the area of MCDM, a smartphone selection problem is demonstrated. To validate the IF-MABAC approach, a comparative discussion is made between the outcomes of the developed and those of the existing methods. The outcomes of analysis demonstrate that the introduced method is well-ordered and effective with the existing ones.