Pub. online:27 Mar 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 2 (2023), pp. 337–355
Abstract
This study introduces a new multi-criteria group decision-making model in organ transplant transportation networks under uncertain situations. A new combined weighting approach is presented to obtain expert weights with various kinds of opinions by integrating similarity measure and subjective judgments of experts. Also, the CRITIC approach is given to obtain transportation criteria weights. Finally, a novel integrated ranking approach is proposed to calculate the rank of each alternative based on ideal point solution and relative preference relation (RPR) methods. This study regards an interval-valued intuitionistic fuzzy set to cope with the vagueness of uncertain conditions in a real case study.
Journal:Informatica
Volume 32, Issue 3 (2021), pp. 583–618
Abstract
Policy-makers are often hesitant to invest in unproven solutions because of a lack of the decision-making framework for managing innovations as a portfolio of investments that balances risk and return, especially in the field of developing new technologies. This study provides a new portfolio matrix for decision making of policy-makers to identify IoT applications in the agriculture sector for future investment based on two dimensions of sustainable development as a return and IoT challenge as a risk using a novel MADM approach. To this end, the identified applications of IoT in the agriculture sector fall into eight areas using the meta-synthesis method. The authors extracted a set of criteria from the literature. Later, the fuzzy Delphi method helped finalise it. The authors extended the SWARA method with interval-valued triangular fuzzy numbers (IVTFN SWARA) and used it to the weighting of the characteristics. Then, the alternatives were rated using the Additive Ratio Assessment (ARAS) method based on interval-valued triangular fuzzy numbers (IVTFN ARAS). Finally, decision-makers evaluated the results of ratings based on two dimensions of sustainability and IoT challenge by developing a framework for decision-making. Results of this paper show that policy-makers can manage IOT innovations in a disciplined way that balances risk and return by a portfolio approach, simultaneously the proposed framework can be used to determine and prioritise the areas of IoT application in the agriculture sector.
Journal:Informatica
Volume 31, Issue 2 (2020), pp. 331–357
Abstract
In practice, the judgments of decision-makers are often uncertain and thus cannot be represented by accurate values. In this study, the opinions of decision-makers are collected based on grey linguistic variables and the data retains the grey nature throughout all the decision-making process. A grey best-worst method (GBWM) is developed for multiple experts multiple criteria decision-making problems that can employ grey linguistic variables as input data to cover uncertainty. An example is solved by the GBWM and then a sensitivity analysis is done to show the robustness of the method. Comparative analyses verify the validity and advantages of the GBWM.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 187–211
Abstract
The risk analysis has always been one of the essential procedures for any areas. The majority of security incidents occur because of ignoring risks or their inaccurate assessment. It is especially dangerous for critical infrastructures. Thus, the article is devoted to the description of the developed model of risk assessment for the essential infrastructures. The goal of the model is to provide a reliable method for multifaceted risk assessment of information infrastructure. The purpose of the article is to present a developed model based on integrated MCDM approaches that allow to correctly assess the risks of the critical information infrastructures.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 265–280
Abstract
In the discrete form of multi-criteria decision-making (MCDM) problems, we are usually confronted with a decision-matrix formed from the information of some alternatives on some criteria. In this study, a new method is proposed for simultaneous evaluation of criteria and alternatives (SECA) in an MCDM problem. For making this type of evaluation, a multi-objective non-linear programming model is formulated. The model is based on maximization of the overall performance of alternatives with consideration of the variation information of decision-matrix within and between criteria. The standard deviation is used to measure the within-criterion, and the correlation is utilized to consider the between-criterion variation information. By solving the multi-objective model, we can determine the overall performance scores of alternatives and the objective weights of criteria simultaneously. To validate the proposed method, a numerical example is used, and three analyses are made. Firstly, we analyse the objective weights determined by the method, secondly, the stability of the performance scores and ranking results are examined, and finally, the ranking results of the proposed method are compared with those of some existing MCDM methods. The results of the analyses show that the proposed method is efficient to deal with MCDM problems.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 1 (2017), pp. 79–104
Abstract
The redundancy allocation problem (RAP) has been studied for many different system structures, objective functions, and distribution assumptions. In this paper, we present a problem formulation and a solution methodology to maximize the system steady-state availability and minimize the system cost for the repairable series-parallel system designs. In the proposed approach, the components’ time-to-failure (TTF) and time-to-repair (TTR) can follow any distribution such as the Gamma, Normal, Weibull, etc. We estimate an approximation of the steady-state availability of each subsystem in the series-parallel system with an individual meta-model. Design of experiment (DOE), simulation and the stepwise regression are used to build these meta-models. Face centred design, which is a type of central composite design is used to design experiments. According to a max–min approach, obtained meta-models are utilized for modelling the problem alongside the cost function of the system. We use the augmented ε-constraint method to reformulate the problem and solve the model. An illustrative example which uses the Gamma distribution for TTF and TTR is explained to represent the performance of the proposed approach. The results of the example show that the proposed approach has a good performance to obtain Pareto (near-Pareto) optimal solutions (system configurations).
Journal:Informatica
Volume 27, Issue 1 (2016), pp. 49–65
Abstract
In the hiring process at companies, decision makers have underused the methods of the multi-criteria decision-making processes of selection of personnel. Therefore, this paper aims to establish a framework for the selection of candidates during the process of the recruitment and selection of personnel based on the SWARA and ARAS methods under uncertainties. The usability and efficiency of the proposed framework is considered in the conducted case study of the selection of candidate for the position of the sales manager.
Journal:Informatica
Volume 26, Issue 3 (2015), pp. 435–451
Abstract
An effective way for managing and controlling a large number of inventory items or stock keeping units (SKUs) is the inventory classification. Traditional ABC analysis which based on only a single criterion is commonly used for classification of SKUs. However, we should consider inventory classification as a multi-criteria problem in practice. In this study, a new method of Evaluation based on Distance from Average Solution (EDAS) is introduced for multi-criteria inventory classification (MCIC) problems. In the proposed method, we use positive and negative distances from the average solution for appraising alternatives (SKUs). To represent performance of the proposed method in MCIC problems, we use a common example with 47 SKUs. Comparing the results of the proposed method with some existing methods shows the good performance of it in ABC classification. The proposed method can also be used for multi-criteria decision-making (MCDM) problems. A comparative analysis is also made for showing the validity and stability of the proposed method in MCDM problems. We compare the proposed method with VIKOR, TOPSIS, SAW and COPRAS methods using an example. Seven sets of criteria weights and Spearman’s correlation coefficient are used for this analysis. The results show that the proposed method is stable in different weights and well consistent with the other methods.
Journal:Informatica
Volume 21, Issue 4 (2010), pp. 597–610
Abstract
The paper presents the process of the selection of a potential supplier, which have to be the most appropriate to stakeholders. The selection is based on a set of criteria: Delivery Price, Financial Position, Production Specifications, Standards and Relevant Certificates, Commercial Strength, and the Performance of supplier, etc. The criteria for evaluation and their importance are selected by taking into consideration the interests and goals of the stakeholders. The solution of problem was made by applying a new Additive Ratio ASsessment (ARAS) method with the grey criteria scores – ARAS-G method. The proposed technique could be applied to substantiate the selection of effective alternative of sustainable development, impact on environment, structures, technologies, investments, etc.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 305–320
Abstract
Multi-attribute analysis is a useful tool in many economical, managerial, constructional, etc. problems. The accuracy of performance measures in COPRAS (The multi-attribute COmplex PRoportional ASsessment of alternatives) method is usually assumed to be accurate. This method assumes direct and proportional dependence of the weight and utility degree of investigated versions on a system of attributes adequately describing the alternatives and on values and weights of the attributes. However, there is usually some uncertainty involved in all multi-attribute model inputs. The objective of this research is to demonstrate how simulation can be used to reflect fuzzy inputs, which allows more complete interpretation of model results. A case study is used to demonstrate the concept of general contractor choice of on the basis of multiple attributes of efficiency with fuzzy inputs applying COPRAS-G method. The research has concluded that the COPRAS-G method is appropriate to use.