Journal:Informatica
Volume 35, Issue 2 (2024), pp. 227–253
Abstract
Like other disciplines, machine learning is currently facing a reproducibility crisis that hinders the advancement of scientific research. Researchers face difficulties reproducing key results due to the lack of critical details, including the disconnection between publications and associated models, data, parameter settings, and experimental results. To promote transparency and trust in research, solutions that improve the accessibility of models and data, facilitate experiment tracking, and allow audit of experimental results are needed. Blockchain technology, characterized by its decentralization, data immutability, cryptographic hash functions, consensus algorithms, robust security measures, access control mechanisms, and innovative smart contracts, offers a compelling pathway for the development of such solutions. To address the reproducibility challenges in machine learning, we present a novel concept of a blockchain-based platform that operates on a peer-to-peer network. This network comprises organizations and researchers actively engaged in machine learning research, seamlessly integrating various machine learning research and development frameworks. To validate the viability of our proposed concept, we implemented a blockchain network using the Hyperledger Fabric infrastructure and conducted experimental simulations in several scenarios to thoroughly evaluate its effectiveness. By fostering transparency and facilitating collaboration, our proposed platform has the potential to significantly improve reproducible research in machine learning and can be adapted to other domains within artificial intelligence.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 4 (2019), pp. 729–748
Abstract
In this paper, we present the progress of blockchain technology from the advent of the original publication titled “Bitcoin: A Peer-to-Peer Electronic Cash System,” written by the mysterious Satoshi Nakamoto, until the current days. Historical background and a comprehensive overview of the blockchain technology are given. We provide an up-to-date comparison of the most popular blockchain platforms with particular emphasis given to consensus protocols. Additionally, we introduce a BlockLib, an extensively growing online library on blockchain platforms collected from the various sources and designed to enable contributions from the blockchain community. Main directions of the current blockchain research, facing challenges as well as the main fields of applications, are summarized. We also layout the possible future lines in the blockchain technology development.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 2 (2019), pp. 349–365
Abstract
The isometric mapping (Isomap) algorithm is often used for analysing hyperspectral images. Isomap allows to reduce such hyperspectral images from a high-dimensional space into a lower-dimensional space, keeping the critical original information. To achieve such objective, Isomap uses the state-of-the-art MultiDimensional Scaling method (MDS) for dimensionality reduction. In this work, we propose to use Isomap with SMACOF, since SMACOF is the most accurate MDS method. A deep comparison, in terms of accuracy, between Isomap based on an eigen-decomposition process and Isomap based on SMACOF has been carried out using three benchmark hyperspectral images. Moreover, for the hyperspectral image classification, three classifiers (support vector machine, k-nearest neighbour, and Random Forest) have been used to compare both Isomap approaches. The experimental investigation has shown that better classification accuracy is obtained by Isomap with SMACOF.
Journal:Informatica
Volume 26, Issue 1 (2015), pp. 33–50
Abstract
Abstract
Classical evolutionary multi-objective optimization algorithms aim at finding an approximation of the entire set of Pareto optimal solutions. By considering the preferences of a decision maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended preference-based evolutionary algorithm has been proposed for solving multi-objective optimization problems. Here, concepts from an interactive synchronous NIMBUS method are borrowed and combined with the R-NSGA-II algorithm. The proposed synchronous R-NSGA-II algorithm uses preference information provided by the decision maker to find only desirable solutions satisfying his/her preferences on the Pareto front. Several scalarizing functions are used simultaneously so the several sets of solutions are obtained from the same preference information. In this paper, the experimental-comparative investigation of the proposed synchronous R-NSGA-II and original R-NSGA-II has been carried out. The results obtained are promising.