Journal:Informatica
Volume 35, Issue 3 (2024), pp. 509–528
Abstract
This paper attempts to demystify the stability of CoCoSo ranking method via a comprehensive simulation experiment. In the experiment, matrices of different dimensions are generated via Python with fuzzy data. Stability is investigated via adequacy and partial adequacy tests. The test passes if the ranking order does not change even after changes are made to entities, and the partial pass signifies that the top ranked alternative remains intact. Results infer that CoCoSo method has better stability with respect to change of alternatives compared to criteria; and CoCoSo method shows better stability with respect to partial adequacy test for criteria.
Pub. online:23 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 65–98
Abstract
Cloud computing has emerged as a transformative technology in the healthcare industry, but selecting the most suitable CV (“cloud vendor”) remains a complex task. This research presents a decision framework for CV selection in the healthcare industry, addressing the challenges of uncertainty, expert hesitation, and conflicting criteria. The proposed framework incorporates FFS (“Fermatean fuzzy set”) to handle uncertainty and data representation effectively. The importance of experts is attained via the variance approach, which considers hesitation and variability. Furthermore, the framework addresses the issue of extreme value hesitancy in criteria through the LOPCOW (“logarithmic percentage change-driven objective weighting”) method, which ensures a balanced and accurate assessment of criterion importance. Personalized grading of CVs is done via the ranking algorithm that considers the formulation of CoCoSo (“combined compromise solution”) with rank fusion, providing a compromise solution that balances conflicting criteria. By integrating these techniques, the proposed framework aims to enhance the rationale and reduce human intervention in CV selection for the healthcare industry. Also, valuable insights are gained from the framework for making informed decisions when selecting CVs for efficient data management and process implementation. A case example from Tamil Nadu is presented to testify to the applicability, while sensitivity and comparison analyses reveal the pros and cons of the framework.
Pub. online:28 Aug 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 3 (2023), pp. 529–556
Abstract
Ineffective evaluation of open-source software learning management system (OSS-LMS) packages can negatively impact organizational effectiveness. Clients may struggle to select the best OSS-LMS package from a wide range of options, leading to a complex multi-criteria group decision-making (MCGDM) problem. This evaluates OSS-LMS packages based on several criteria like usability, functionality, e-learning standards, reliability, activity tracking, course development, assessment, backup and recovery, error reporting, efficiency, operating system compatibility, computer-managed instruction, authentication, authorization, troubleshooting, maintenance, upgrading, and scalability. Handling uncertain data is a vital aspect of OSS-LMS package evaluation. To tackle MCGDM issues, this study presents a consensus weighted sum product (c-WASPAS) method which is applied to an educational OSS-LMS package selection problem to evaluate four OSS-LMS packages, namely ATutor, eFront, Moodle, and Sakai. The findings indicate that the priority order of alternatives is Moodle > Sakai > eFront > ATutor and, therefore, MOODLE is the best OSS-LMS package for the case study. A sensitivity analysis of criteria weights is also conducted, as well as a comparative study, to demonstrate the effectiveness of the proposed method. It is essential to note that proper OSS-LMS package evaluation is crucial to avoid negative impacts on organizational performance. By addressing MCGDM issues and dealing with uncertain information, the c-WASPAS method presented in this study can assist clients in selecting the most appropriate OSS-LMS package from multiple alternatives. The findings of this study can benefit educational institutions and other organizations that rely on OSS-LMS packages to run their operations.
Pub. online:13 Mar 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 85–120
Abstract
Due to the increasing importance of evaluating the quality of health care services using the patient-centred approach, this study aimed to propose a novel framework by combining the SERVQUAL model and multi-attribute decision-making (MADM) methods using interval-valued triangular fuzzy numbers (IVTFN). In this study, after an initial overview of related work and expert opinions, a list of the most important dimensions and indicators for measuring the quality of health care services was extracted and localized. Then, to determine the importance of each of the identified factors, one of MADM’s acceptable methods called step-wise weight assessment ratio analysis (SWARA) was used. Then, in order to use the developed framework for comparing different health centres and ranking them, after collecting evaluation data in the form of linguistic variables, another practical method in the field of MADM has been used, namely, Additive Ratio Assessment (ARAS) method. The dimensions and sub-dimensions identified are, on the one hand, appropriate to the conditions of the case study and, on the other hand, the findings from the implementation show that among the dimensions of health service quality, responsiveness and then reliability has the highest rank in this case. Also, the use of IVTFN, on the one hand, eliminates the problems related to the use of Likert scale in other quality assessment methods and, on the other hand, reduces the possibility of facing imperfect knowledge of data which is a common problem in the field of qualitative evaluations. Utilizing the results of this study can significantly help decision makers in their choice of strategies to improve service quality. Furthermore, improving the quality of services can play an important role in promoting the competitiveness and performance of health care providers by increasing patient satisfaction with the services received. Also, as a side effect, the developed framework can be used to compare the performance of different hospitals and health centres, as well as their ranking.
Journal:Informatica
Volume 33, Issue 3 (2022), pp. 593–621
Abstract
This paper proposes a new multi-criteria group decision-making (MCGDM) method utilizing q-rung orthopair fuzzy (qROF) sets, improved power weighted operators and improved power weighted Maclaurin symmetric mean (MSM) operators. The power weighted averaging operator and power weighted Maclaurin symmetric mean (MSM) operator used in the existing MCGDM methods have the drawback of being unable to distinguish the priority order of alternatives in some scenarios, especially when one of the qROF numbers being considered has a non-belongingness grade of 0 or a belongingness grade of 1. To address this limitation of existing MCGDM methods, four operators, namely qROF improved power weighted averaging (qROFIPWA), qROF improved power weighted geometric (qROFIPWG), qROF improved power weighted averaging MSM (qROFIPWAMSM) and qROF improved power weighted geometric MSM (qROFIPWGMSM), are proposed in this paper. These operators mitigate the effects of erroneous assessment of information from some biased decision-makers, making the decision-making process more reliable. Following that, a group decision-making methodology is developed that is capable of generating a reasonable ranking order of alternatives when one of the qROF numbers considered has a non-belongingness grade of 0 or a belongingness grade of 1. To investigate the applicability of the proposed approach, a case study is also presented and a comparison-based investigation is used to demonstrate the superiority of the approach.
Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 16, Issue 1 (2005), pp. 107–120
Abstract
When handling engineering problems associated with optimal alternative selection a researcher often deals with not sufficiently accurate data. The alternatives are usually assessed by applying several different criteria. A method takes advantage of the relationship between fuzzy sets and matrix game theories can be offered for multicriteria decision-making. Practical investigations have already been discussed for selecting the variants water supply systems.
Pub. online:3 Dec 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 1 (2022), pp. 35–54
Abstract
In order to avoid working in a constrained hazardous environment, manual spray painting operation is gradually being replaced by automated robotic systems in many manufacturing industries. Application of spray painting robots ensures defect-free painting of dissimilar components with higher repeatability, flexibility, productivity, reduced cycle time and minimum wastage of paint. Due to availability of a large number of viable options in the market, selection of a spray painting robot suitable for a given application poses a great problem. Thus, this paper proposes the integrated application of step-wise weight assessment ratio analysis (SWARA) and combined compromise solution (CoCoSo) methods to identify the most apposite spray painting robot for an automobile industry based on seven evaluation criteria (payload, mass, speed, repeatability, reach, cost and power consumption). The SWARA method identifies cost as the most significant criterion based on a set preference order, whereas, Fanuc P-350iA/45 is selected as the best spray painting robot by CoCoSo method. The derived ranking results are also contrasted with other popular multi-criteria decision making (MCDM) techniques (TOPSIS, VIKOR, COPRAS, PROMETHEE and MOORA) and subjective criteria weighting methods (AHP, PIPRECIA, BWM and FUCOM). High degrees of similarity in the ranking patterns between the adopted approach and other MCDM techniques prove its effectiveness in solving complex industrial robot selection problems. This integrated approach is proved to be quite robust being almost unaffected by the changing values of the corresponding tuning parameter in low-dimensional MCDM problems.
Journal:Informatica
Volume 32, Issue 3 (2021), pp. 583–618
Abstract
Policy-makers are often hesitant to invest in unproven solutions because of a lack of the decision-making framework for managing innovations as a portfolio of investments that balances risk and return, especially in the field of developing new technologies. This study provides a new portfolio matrix for decision making of policy-makers to identify IoT applications in the agriculture sector for future investment based on two dimensions of sustainable development as a return and IoT challenge as a risk using a novel MADM approach. To this end, the identified applications of IoT in the agriculture sector fall into eight areas using the meta-synthesis method. The authors extracted a set of criteria from the literature. Later, the fuzzy Delphi method helped finalise it. The authors extended the SWARA method with interval-valued triangular fuzzy numbers (IVTFN SWARA) and used it to the weighting of the characteristics. Then, the alternatives were rated using the Additive Ratio Assessment (ARAS) method based on interval-valued triangular fuzzy numbers (IVTFN ARAS). Finally, decision-makers evaluated the results of ratings based on two dimensions of sustainability and IoT challenge by developing a framework for decision-making. Results of this paper show that policy-makers can manage IOT innovations in a disciplined way that balances risk and return by a portfolio approach, simultaneously the proposed framework can be used to determine and prioritise the areas of IoT application in the agriculture sector.
Pub. online:10 Mar 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 145–161
Abstract
The main aim of the article is to propose a new multiple criteria decision-making approach for selecting alternatives, the newly-developed MULTIMOOSRAL approach, which integrates advantages of the three well-known and prominent multiple-criteria decision-making methods: MOOSRA, MOORA, and MULTIMOORA. More specifically, the MULTIMOOSRAL method has been further upgraded with an approach that can be clearly seen in the well-known WASPAS and CoCoSo methods, which rely on the integration of weighted sum and weighted product approaches. In addition to the above approaches, the MULTIMOOSRAL method also integrates a logarithmic approximation approach. The expectation from the development of this method is that the integration of several approaches can provide a much more reliable selection of the most appropriate alternative, which can be very important in cases where the performance of alternatives obtained by using some other method does not differ much. Finally, the ranking of alternatives based on the dominance theory, used in the MOORA and MULTIMOORA methods, is replaced by a new original approach that should allow a much simpler final ranking of alternatives in order to reach a stronger result with five different techniques. The suitability and efficacy of the proposed MULTIMOOSRAL approach are presented through an illustrative case study of the supplier selection.
Pub. online:8 Jun 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 4 (2020), pp. 857–880
Abstract
Normalization and aggregation are two most important issues in multi-criteria analysis. Although various multi-criteria decision-making (MCDM) methods have been developed over the past several decades, few of them integrate multiple normalization techniques and mixed aggregation approaches at the same time to reduce the deviations of evaluation values and enhance the reliability of the final decision result. This study is dedicated to introducing a new MCDM method called Mixed Aggregation by COmprehensive Normalization Technique (MACONT) to tackle complicate MCDM problems. This method introduces a comprehensive normalization technique based on criterion types, and then uses two mixed aggregation operators to aggregate the distance values between each alternative and the reference alternative on different criteria from the perspectives of compensation and non-compensation. An illustrative example is given to show the applicability of the proposed method, and the advantages of the proposed method are highlighted through sensitivity analyses and comparative analyses.