Pub. online:7 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 743–769
Abstract
Ligand-Based Virtual Screening accelerates and cheapens the design of new drugs. However, it needs efficient optimizers because of the size of compound databases. This work proposes a new method called Tangram CW. The proposal also encloses a knowledge-based filter of compounds. Tangram CW achieves comparable results to the state-of-the-art tools OptiPharm and 2L-GO-Pharm using about a tenth of their computational budget without filtering. Activating it discards more than two thirds of the database while keeping the desired compounds. Thus, it is possible to consider molecular flexibility despite increasing the options. The implemented software package is public.
Journal:Informatica
Volume 31, Issue 4 (2020), pp. 821–839
Abstract
Ligand Based Virtual Screening methods are widely used in drug discovery as filters for subsequent in-vitro and in-vivo characterization. Since the databases processed are enormously large, this pre-selection process requires the use of fast and precise methodologies. In this work, the similarity between compounds is measured in terms of electrostatic potential. To do so, we propose a new and alternative methodology, called LBVS-Electrostatic. Accordingly to the obtained results, we are able to conclude that many of the compounds proposed with our novel approach could not be discovered with the classical one.