Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 31, Issue 4 (2020)
  4. Optimizing Electrostatic Similarity for ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Optimizing Electrostatic Similarity for Virtual Screening: A New Methodology
Volume 31, Issue 4 (2020), pp. 821–839
Savíns Puertas-Martín   Juana L. Redondo   Horacio Pérez-Sánchez   Pilar M. Ortigosa  

Authors

 
Placeholder
https://doi.org/10.15388/20-INFOR424
Pub. online: 29 July 2020      Type: Research Article      Open accessOpen Access

Received
1 March 2020
Accepted
1 July 2020
Published
29 July 2020

Abstract

Ligand Based Virtual Screening methods are widely used in drug discovery as filters for subsequent in-vitro and in-vivo characterization. Since the databases processed are enormously large, this pre-selection process requires the use of fast and precise methodologies. In this work, the similarity between compounds is measured in terms of electrostatic potential. To do so, we propose a new and alternative methodology, called LBVS-Electrostatic. Accordingly to the obtained results, we are able to conclude that many of the compounds proposed with our novel approach could not be discovered with the classical one.

References

 
Böhm, H.-J., Stahl, M. (2003). The Use of Scoring Functions in Drug Discovery Applications. John Wiley & Sons, Inc., pp. 41–87.
 
Boström, J., Grant, J.A., Fjellström, O., Thelin, A., Gustafsson, D. (2013). Potent fibrinolysis inhibitor discovered by shape and electrostatic complementarity to the drug tranexamic acid. Journal of Medicinal Chemistry, 56(8), 3273–3280.
 
Böttcher, C., Belle, O.V., Belle, B. (1974). Theory of Electric Polarization. Elsevier Scientific Pub. Co, Michigan.
 
Case, D.A., Cerutti, D.S., Cheatham, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Greene, D., Homeyer, N., Izadi, S., Kovalenko, A., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D., Merz, K.M., Monard, G., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D.R., Roitberg, A., Sagui, C., Simmerling, C.L., Botello-Smith, W.M., Swails, J., Walker, R.C., Wang, J., Wolf, R.M., Wu, X., Xiao, L., York, D.M., Kollman, P.A. (2017). AMBER. University of California, San Francisco.
 
Chu, S., Gochin, M. (2013). Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorganic and Medicinal Chemistry Letters, 23(18), 5114–5118.
 
Connelly, P.R., Snyder, P.W., Zhang, Y., McClain, B., Quinn, B.P., Johnston, S., Medek, A., Tanoury, J., Griffith, J., Patrick Walters, W., Dokou, E., Knezic, D., Bransford, P. (2015). The potency–insolubility conundrum in pharmaceuticals: mechanism and solution for hepatitis C protease inhibitors. Biophysical Chemistry, 196, 100–108.
 
Dakshanamurthy, S., Issa, N.T., Assefnia, S., Seshasayee, A., Peters, O.J., Madhavan, S., Uren, A., Brown, M.L., Byers, S.W. (2012). Predicting new indications for approved drugs using a proteochemometric method. Journal of Medicinal Chemistry, 55(15), 6832–6848.
 
Dou, X., Jiang, L., Wang, Y., Jin, H., Liu, Z., Zhang, L. (2018). Discovery of new GSK-3 β inhibitors through structure-based virtual screening. Bioorganic & Medicinal Chemistry Letters, 28(2), 160–166.
 
Ellingson, B.A., Skillman, A.G., Nicholls, A. (2010). Analysis of SM8 and Zap TK calculations and their geometric sensitivity. Journal of Computer-Aided Molecular Design, 24(4), 335–342.
 
Fernández, J., Tóth, B.G.-, Redondo, J.L., Ortigosa, P.M., Arrondo, A.G. (2017). A planar single-facility competitive location and design problem under the multi-deterministic choice rule. Computers & Operations Research, 78, 305–315.
 
Ferrández, M.R., Redondo, J.L., Ivorra, B., Ramos, Á.M., Ortigosa, P.M. (2019). Preference-based multi-objectivization applied to decision support for high-pressure thermal processes in food treatment. Applied Soft Computing, 79, 326–340.
 
Gowthaman, R., Lyskov, S., Karanicolas, J. (2015). DARC 2.0: improved docking and virtual screening at protein interaction sites. PLOS ONE, 10(7), 0131612.
 
Grant, J.A., Pickup, B.T. (1995). A Gaussian description of molecular shape. The Journal of Physical Chemistry, 99(11), 3503–3510.
 
Grant, J.A., Gallardo, M.A., Pickup, B.T. (1996). A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. Journal of Computational Chemistry, 17(14), 1653–1666.
 
Halgren, T.A. (1995). Potential energy functions. Current Opinion in Structural Biology, 5(2), 205–210.
 
Hamza, A., Wei, N.-N., Zhan, C.-G. (2012). Ligand-based virtual screening approach using a new scoring function. Journal of Chemical Information and Modeling, 52(4), 963–974.
 
Haque, I., Pande, V. Method for rapidly approximating similarities. Patent number: US8706427B2. US8706427B2.
 
Hawkins, P.C.D., Stahl, G. (2018). Ligand-based methods in GPCR computer-aided drug design. Methods in Molecular Biology, 1705, 365–374.
 
Hevener, K.E., Mehboob, S., Su, P.-C., Truong, K., Boci, T., Deng, J., Ghassemi, M., Cook, J.L., Johnson, M.E. (2012). Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. Journal of Medicinal Chemistry, 55(1), 268–279.
 
Ivorra, B., Ferrández, M.R., Crespo, M., Redondo, J.L., Ortigosa, P.M., Santiago, J.G., Ramos, Á.M. (2018). Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein folding. Journal of Mathematics in Industry, 8(1), 4.
 
Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 241–272.
 
Kalászi, A., Szisz, D., Imre, G., Polgár, T. (2014). Screen3D: A novel fully flexible high-throughput shape-similarity search method. Journal of Chemical Information and Modeling, 54(4), 1036–1049.
 
Kaoud, T.S., Yan, C., Mitra, S., Tseng, C.-C., Jose, J., Taliaferro, J.M., Tuohetahuntila, M., Devkota, A., Sammons, R., Park, J., Park, H., Shi, Y., Hong, J., Ren, P., Dalby, K.N. (2012). From in Silico discovery to intra-cellular activity: targeting JNK–protein interactions with small molecules. ACS Medicinal Chemistry Letters, 3(9), 721–725.
 
Kar, S., Roy, K. (2013). How far can virtual screening take us in drug discovery? Expert Opinion on Drug Discovery, 8(3), 245–261.
 
Kim, E.-S., Cho, H., Lim, C., Lee, J.-Y., Lee, D.-I., Kim, S., Moon, A. (2015). A natural piper-amide-like compound NED-135 exhibits a potent inhibitory effect on the invasive breast cancer cells. Chemico-Biological Interactions, 237, 58–65.
 
Kim, Y.-R., Koh, H.-J., Kim, J.-S., Yun, J.-S., Jang, K., Lee, J.-Y., Jung, J.U., Yang, C.-S. (2016). Peptide inhibition of p22phox and Rubicon interaction as a therapeutic strategy for septic shock. Biomaterials, 101, 47–59.
 
Kossmann, B.R., Abdelmalak, M., Lopez, S., Tender, G., Yan, C., Pommier, Y., Marchand, C., Ivanov, I. (2016). Discovery of selective inhibitors of tyrosyl-DNA phosphodiesterase 2 by targeting the enzyme DNA-binding cleft. Bioorganic and Medicinal Chemistry Letters, 26(14), 3232–3236.
 
Kumar, A., Zhang, K.Y.J. (2016). Application of shape similarity in pose selection and virtual screening in CSARdock2014 exercise. Journal of Chemical Information and Modeling, 56(6), 965–973.
 
Kumar, A., Zhang, K.Y.J. (2018). Advances in the development of shape similarity methods and their application in drug discovery. Frontiers in Chemistry, 6, 315.
 
Lešnik, S., Štular, T., Brus, B., Knez, D., Gobec, S., Janežič, D., Konc, J. (2015). LiSiCA: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase inhibitors. Journal of Chemical Information and Modeling, 55(8), 1521–1528.
 
Liu, X., Jiang, H., Li, H. (2011). SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. method and assessment of virtual screening. Journal of Chemical Information and Modeling, 51(9), 2372–2385.
 
López-Ramos, M., Perruccio, F. (2010). HPPD: Ligand- and target-based virtual screening on a herbicide target. Journal of Chemical Information and Modeling, 50(5), 801–814.
 
López-Ramos, M., Perruccio, F., Lo, M., Perruccio, F. (2009). HPPD: ligand- and target-based virtual screening on a herbicide target. Journal of Chemical Information and Modeling, 50(1), 801–814.
 
Maccari, G., Jaeger, T., Moraca, F., Biava, M., Flohé, L., Botta, M. (2011). A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase. Bioorganic and Medicinal Chemistry Letters, 21(18), 5255–5258.
 
Massarotti, A., Brunco, A., Sorba, G., Tron, G.C. (2014). ZINClick: a database of 16 million novel, patentable, and readily synthesizable 1,4-disubstituted triazoles. Journal of Chemical Information and Modeling, 54(2), 396–406.
 
OpenEye Scientific Software (2019a). ROCS. Santa Fe, NM. www.eyesopen.com.
 
OpenEye Scientific Software (2019b). VIDA 4.4.0.4. Santa Fe, NM. www.eyesopen.com.
 
OpenEye Scientific Software (2019c). Zap Toolkit. Santa Fe, NM. www.eyesopen.com.
 
Oyarzabal, J., Howe, T., Alcazar, J., Andrés, J.I., Alvarez, R.M., Dautzenberg, F., Iturrino, L., Martínez, S., Van der Linden, I. (2009). Novel approach for chemotype hopping based on annotated databases of chemically feasible fragments and a prospective case study: new melanin concentrating hormone antagonists. Journal of Medicinal Chemistry, 52(7), 2076–2089.
 
Puertas-Martín, S., Redondo, J.L., Ortigosa, P.M., Pérez-Sánchez, H. (2019). OptiPharm: an evolutionary algorithm to compare shape similarity. Scientific Reports, 9(1), 1398.
 
Schmidt, T.C., Cosgrove, D.A., Boström, J. (2018). ReFlex3D: refined flexible alignment of molecules using shape and electrostatics. Journal of Chemical Information and Modeling, 7–00618.
 
Thomas, D.G., Chun, J., Chen, Z., Wei, G., Baker, N.A. (2013). Parameterization of a geometric flow implicit solvation model. Journal of Computational Chemistry, 34(8), 687–695.
 
Tiikkainen, P., Markt, P., Wolber, G., Kirchmair, J., Distinto, S., Poso, A., Kallioniemi, O. (2009). Critical comparison of virtual screening methods against the muv data set. Journal of Chemical Information and Modeling, 49(10), 2168–2178.
 
Tresadern, G., Bemporad, D., Howe, T. (2009). A comparison of ligand based virtual screening methods and application to corticotropin releasing factor 1 receptor. Journal of Molecular Graphics and Modelling, 27(8), 860–870.
 
Wang, Z., Lu, Y., Seibel, W., Miller, D.D., Li, W. (2009). Identifying novel molecular structures for advanced melanoma by ligand-based virtual screening. Journal of Chemical Information and Modeling, 49(6), 1420–1427.
 
Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), 1074–1082.
 
Woodring, J.L., Bachovchin, K.A., Brady, K.G., Gallerstein, M.F., Erath, J., Tanghe, S., Leed, S.E., Rodriguez, A., Mensa-Wilmot, K., Sciotti, R.J., Pollastri, M.P. (2017). Optimization of physicochemical properties for 4-anilinoquinazoline inhibitors of trypanosome proliferation. European Journal of Medicinal Chemistry, 141, 446–459.
 
Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., Xu, J. (2013). Enhancing molecular shape comparison by weighted Gaussian functions. Journal of Chemical Information and Modeling, 53(8), 1967–1978.
 
Yuan, S., Chan, J.F.-W., Den-Haan, H., Chik, K.K.-H., Zhang, A.J., Chan, C.C.-S., Poon, V.K.-M., Yip, C.C.-Y., Mak, W.W.-N., Zhu, Z., Zou, Z., Tee, K.-M., Cai, J.-P., Chan, K.-H., de la Peña, J., Pérez-Sánchez, H., Cerón-Carrasco, J.P., Yuen, K.-Y. (2017). Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Research, 145, 33–43.

Biographies

Puertas-Martín Savíns
savinspm@ual.es

S. Puertas-Martín is a predoctoral researcher at the Informatics Department at University of Almería, Spain. He studied the degree and master in computer engineering at the University of Almería. He is currently doing his PhD thanks to the Spanish FPU program. His publications and more information about him can be found on https://www.scopus.com/authid/detail.uri?authorId=57201417677. His research interests are drug discovery, global optimization and high performance computing.

L. Redondo Juana
jlredondo@ual.es

J.L. Redondo is a professor at the Informatics Department at University of Almería, Spain. She obtained her PhD from the University of Almería. Her publications can be found on https://www.scopus.com/authid/detail.uri?authorId=35206862500. Her research interests include high performance computing, global optimization and applications.

Pérez-Sánchez Horacio
hperez@ucam.edu

P.M. Ortigosa is a full professor at the Informatics Department at University of Almería, Spain. She obtained her PhD from the University of Málaga. Her publications can be found on https://www.scopus.com/authid/detail.uri?authorId=6602759441. Her research interests include high performance computing, global optimization and applications.

M. Ortigosa Pilar
ortigosa@ual.es

H. Pérez-Sánchez is principal investigator of the Structural Bioinformatics and High Performance Computing (BIO-HPC) research group at Universidad Católica de Murcia (UCAM), Spain. He obtained his PhD from the University of Murcia. His publications can be found on https://www.scopus.com/authid/detail.uri?authorId=12767397700. His research interests include high performance computing, structural bioinformatics and physical chemistry.


Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
virtual screening shape similarity electrostatic similarity

Funding
This work was supported by the Spanish Ministry of Economy and Competitiveness through the CTQ2017-87974-R and RTI2018-095993-B-100 grants; by the Programa Regional de Fomento de la Investigación (Plan de Actuación 2018, Región de Murcia, Spain) through the: ‘Ayudas a la realización de proyectos para el desarrollo de investigación científica y técnica por grupos competitivos (20988/PI/18)’ grant; by the Junta de Andalucía through the grant Proyectos de excelencia (P18-RT-1193), and by the University of Almería through the grant: “Ayudas a proyectos de investigación I+D+I en el marco del Programa Operativo FEDER 2014-20 “(UAL18-TIC-A020-B); and by Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, 20817/PI/18). Savíns Puertas Martín is a fellow of the Spanish ‘Formación del Profesorado Universitario’ program (FPU15/02912), financed by the Spanish Ministry of Education, Culture and Sport.

Metrics
since January 2020
2342

Article info
views

965

Full article
views

1176

PDF
downloads

312

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy