Pub. online:23 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 1 (2020), pp. 21–34
Abstract
The best-worst method (BWM) is a multi-criteria decision-making method which works based on a pairwise comparison system. Using such a systematic pairwise comparison enhances consistency and reliability of results. The BWM results in single solution when there are two or three criteria, and for problems with fully-consistent systems, with any number of criteria. To obtain the weights of criteria for not fully-consistent comparison systems with more than three criteria, there may be a multiple optimal solution. Although multiple optimality may be desirable in some cases, in other cases, decision-makers prefer to have a unique optimal solution. This study proposes new models which result in a unique solution. The proposed models have less constraints in comparison with the previous models.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 265–280
Abstract
In the discrete form of multi-criteria decision-making (MCDM) problems, we are usually confronted with a decision-matrix formed from the information of some alternatives on some criteria. In this study, a new method is proposed for simultaneous evaluation of criteria and alternatives (SECA) in an MCDM problem. For making this type of evaluation, a multi-objective non-linear programming model is formulated. The model is based on maximization of the overall performance of alternatives with consideration of the variation information of decision-matrix within and between criteria. The standard deviation is used to measure the within-criterion, and the correlation is utilized to consider the between-criterion variation information. By solving the multi-objective model, we can determine the overall performance scores of alternatives and the objective weights of criteria simultaneously. To validate the proposed method, a numerical example is used, and three analyses are made. Firstly, we analyse the objective weights determined by the method, secondly, the stability of the performance scores and ranking results are examined, and finally, the ranking results of the proposed method are compared with those of some existing MCDM methods. The results of the analyses show that the proposed method is efficient to deal with MCDM problems.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 1 (2017), pp. 79–104
Abstract
The redundancy allocation problem (RAP) has been studied for many different system structures, objective functions, and distribution assumptions. In this paper, we present a problem formulation and a solution methodology to maximize the system steady-state availability and minimize the system cost for the repairable series-parallel system designs. In the proposed approach, the components’ time-to-failure (TTF) and time-to-repair (TTR) can follow any distribution such as the Gamma, Normal, Weibull, etc. We estimate an approximation of the steady-state availability of each subsystem in the series-parallel system with an individual meta-model. Design of experiment (DOE), simulation and the stepwise regression are used to build these meta-models. Face centred design, which is a type of central composite design is used to design experiments. According to a max–min approach, obtained meta-models are utilized for modelling the problem alongside the cost function of the system. We use the augmented ε-constraint method to reformulate the problem and solve the model. An illustrative example which uses the Gamma distribution for TTF and TTR is explained to represent the performance of the proposed approach. The results of the example show that the proposed approach has a good performance to obtain Pareto (near-Pareto) optimal solutions (system configurations).
Journal:Informatica
Volume 25, Issue 1 (2014), pp. 21–36
Abstract
In multi criteria Decision Making, the decision maker wants to find the best alternative among a set of alternatives in order to satisfy a set of criteria. Traditionally, decision making models are based on crisp data. The shortcoming of these data in capturing the reality and lack of information persuaded researchers to develop decision making methods with uncertain data. In this paper, the ELECTRE method is extended with black numbers, under ambiguous environment. The proposed method is applied in a supplier selection problem. It's an outstanding method that can be used in real world problems with ill-defined and incomplete data.