Pub. online:20 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 679–711
Abstract
A complex spherical fuzzy set (CSFS) is a generalization of the spherical fuzzy set (SFS) to express the two-dimensional ambiguous information in which the range of positive, neutral and negative degrees occurs in the complex plane with the unit disk. Considering the vital importance of the concept of CSFSs which is gaining massive attention in the research area of two-dimensional uncertain information, we aim to establish a novel methodology for multi-criteria group decision-making (MCGDM). This methodology allows us to calculate both the weights of the decision-makers (DMs) and the weights of the criteria objectively. For this goal, we first introduce a new entropy measure function that measures the fuzziness degree associated with a CSFS to compute the unknown criteria weights in this methodology. Then, we present an innovative Complex Proportional Assessment (COPRAS) method based on the proposed entropy measure in the complex spherical fuzzy environment. Besides, we solve a strategic supplier selection problem which is very important to maximize the efficiency of the trading companies. Finally, we present some comparative analyses with some existing methods in different set theories, including the entropy measures, to show the feasibility and usefulness of the proposed method in the decision-making process.
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 713–742
Abstract
In this paper, we introduce the concept of circular Pythagorean fuzzy set (value) (C-PFS(V)) as a new generalization of both circular intuitionistic fuzzy sets (C-IFSs) proposed by Atannassov and Pythagorean fuzzy sets (PFSs) proposed by Yager. A circular Pythagorean fuzzy set is represented by a circle that represents the membership degree and the non-membership degree and whose centre consists of non-negative real numbers μ and ν with the condition ${\mu ^{2}}+{\nu ^{2}}\leqslant 1$. A C-PFS models the fuzziness of the uncertain information more properly thanks to its structure that allows modelling the information with points of a circle of a certain centre and a radius. Therefore, a C-PFS lets decision makers to evaluate objects in a larger and more flexible region and thus more sensitive decisions can be made. After defining the concept of C-PFS we define some fundamental set operations between C-PFSs and propose some algebraic operations between C-PFVs via general triangular norms and triangular conorms. By utilizing these algebraic operations, we introduce some weighted aggregation operators to transform input values represented by C-PFVs to a single output value. Then to determine the degree of similarity between C-PFVs we define a cosine similarity measure based on radius. Furthermore, we develop a method to transform a collection of Pythagorean fuzzy values to a C-PFS. Finally, a method is given to solve multi-criteria decision making problems in circular Pythagorean fuzzy environment and the proposed method is practiced to a problem about selecting the best photovoltaic cell from the literature. We also study the comparison analysis and time complexity of the proposed method.
Pub. online:7 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 743–769
Abstract
Ligand-Based Virtual Screening accelerates and cheapens the design of new drugs. However, it needs efficient optimizers because of the size of compound databases. This work proposes a new method called Tangram CW. The proposal also encloses a knowledge-based filter of compounds. Tangram CW achieves comparable results to the state-of-the-art tools OptiPharm and 2L-GO-Pharm using about a tenth of their computational budget without filtering. Activating it discards more than two thirds of the database while keeping the desired compounds. Thus, it is possible to consider molecular flexibility despite increasing the options. The implemented software package is public.
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 771–794
Abstract
The quality of the input data is amongst the decisive factors affecting the speed and effectiveness of recurrent neural network (RNN) learning. We present here a novel methodology to select optimal training data (those with the highest learning capacity) by approaching the problem from a decision making point of view. The key idea, which underpins the design of the mathematical structure that supports the selection, is to define first a binary relation that gives preference to inputs with higher estimator abilities. The Von Newman Morgenstern theorem (VNM), a cornerstone of decision theory, is then applied to determine the level of efficiency of the training dataset based on the probability of success derived from a purpose-designed framework based on Markov networks. To the best of the author’s knowledge, this is the first time that this result has been applied to data selection tasks. Hence, it is shown that Markov Networks, mainly known as generative models, can successfully participate in discriminative tasks when used in conjunction with the VNM theorem.
The simplicity of our design allows the selection to be carried out alongside the training. Hence, since learning progresses with only the optimal inputs, the data noise gradually disappears: the result is an improvement in the performance while minimising the likelihood of overfitting.
Pub. online:6 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 795–824
Abstract
Master data has been revealed as one of the most potent instruments to guarantee adequate levels of data quality. The main contribution of this paper is a data quality model to guide repeatable and homogeneous evaluations of the level of data quality of master data repositories. This data quality model follows several international open standards: ISO/IEC 25012, ISO/IEC 25024, and ISO 8000-1000, enabling compliance certification. A case study of applying the data quality model to an organizational master data repository has been carried out to demonstrate the applicability of the data quality model.
Pub. online:12 Oct 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 825–845
Abstract
In many industrial sectors, the current digitalization trend resulted in new products and services that exploit the potential of built-in sensors, actuators, and control systems. The business models related to these products and services usually are data-driven and integrated into digital ecosystems. Quantified products (QP) are a new product category that exploits data of individual product instances and fleets of instances. A quantified product is a product whose instances collect data about themselves that can be measured or, by design, leave traces of data. The QP design has to consider what dependencies exist between the actual product, services related to the product, and the digital ecosystem of the services. By investigating three industrial case studies, the paper contributes to a better understanding of typical features of QP and the implications of these features for the design of products and services. For this purpose, we combine the analysis of features of QP potentially affecting design with an analysis of dependencies between features. The main contributions of the work are (1) three case studies describing QP design and development, (2) a set of recurring features of QPs derived from the cases, and (3) a feature model capturing design dependencies of these features.
Pub. online:30 Mar 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 847–880
Abstract
Modelling the reliability information in decision making process is an important issue to inclusively reflect the thoughts of decision makers. The Evaluation Based on Distance from Average Solution (EDAS) and Analytic Hierarchy Process (AHP) are frequently used MCDM methods, yet their fuzzy extensions in the literature are incapable of representing the reliability of experts’ fuzzy preferences, which may have important effects on the results. The first goal of this study is to extend the EDAS method by using Z-fuzzy numbers to reinforce its representation ability of fuzzy linguistic expressions. The second goal is to propose a decision making methodology for the solution of fuzzy MCDM problems by using Z-fuzzy AHP method for determining the criteria weights and Z-fuzzy EDAS method for the selection of the best alternative. The contribution of the study is to present an MCDM based decision support tool for the managers under vague and imprecise data, which also considers the reliability of these data. The applicability of the proposed model is presented with an application to wind energy investment problem aiming at the selection of the best wind turbine. Finally, the effectiveness and competitiveness of the proposed methodology is demonstrated by making a comparative analysis with the Z-fuzzy TOPSIS method. The results show that the proposed methodology can not only represent experts’ evaluation information extensively, but also reveal a logical and consistent sequence related to wind turbine alternatives using reliability information.
Pub. online:17 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 881–908
Abstract
ELECTRE III is a well-established outranking relation model used to address the ranking of alternatives in multi-criteria and multi-actor decision-making problems. It has been extensively studied across various scientific fields. Due to the complexity of decision-making under uncertainty, some higher-order fuzzy sets have been proposed to effectively model this issue. Circular Intuitionistic Fuzzy Set (CIFS) is one such set recently introduced to handle uncertain IF values. In CIFS, each element of the set is characterized by a circular area with a radius, r and membership/non-membership degrees as the centre. This paper introduces CIF-ELECTRE III, an extension of ELECTRE III within the CIFS framework, for group decision analysis. To achieve this, we define extensions for the group decision matrix and group weighting vector based on CIFS conditions, particularly focusing on optimistic and pessimistic attitudes. These attitudinal characters of the group of actors are constructed using conditional rules to ensure that each element of the set falls within the circular area. Parameterized by $\alpha \in [0,1]$ for the net score degree, we conduct an extensive analysis of group decision-making between optimistic and pessimistic attitudes. To illustrate the applicability of the proposed model, we provide a numerical example of the stock-picking process. Additionally, we conduct a comparative analysis with existing sets and perform sensitivity analyses to validate the results of the proposed model.