Pub. online:19 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 199–222
Abstract
Due to the popularity of mobile communication, many computing devices are exposed to remote environments without physical protection so that these devices easily suffer from leakage attacks (e.g., side-channel attacks). Under such leakage attacks, when a computing device performs some cryptographic algorithm, an adversary may acquire partial bits of secret keys participated in this cryptographic algorithm. To resist leakage attacks, researchers offer leakage-resilient cryptography as a solution. A signcryption scheme combines signing and encrypting processes to simultaneously provide both authentication and confidentiality, which is an important cryptographic primitive. Indeed, many leakage-resilient signcryption schemes under various public key system (PKS) settings were proposed. Unfortunately, these schemes still have two shortcomings, namely, bounded leakage resilience and conditionally continuous leakage resilience. In this paper, a “fully” continuous leakage-resilient certificate-based signcryption (FCLR-CBSC) scheme is proposed. Security analysis is formally proved to show that our scheme possesses both authentication and confidentiality against two types of adversaries in the certificate-based PKS setting. Performance analysis and simulation experience show that our scheme is suited to run on both a PC and a mobile device.
Pub. online:24 Jan 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 1 (2022), pp. 151–179
Abstract
To resolve both certificate management and key escrow problems, a certificateless public-key system (CLPKS) has been proposed. However, a CLPKS setting must provide a revocation mechanism to revoke compromised users. Thus, a revocable certificateless public-key system (RCLPKS) was presented to address the revocation issue and, in such a system, the key generation centre (KGC) is responsible to run this revocation functionality. Furthermore, a RCLPKS setting with an outsourced revocation authority (ORA), named RCLPKS-ORA setting, was proposed to employ the ORA to alleviate the KGC’s computational burden. Very recently it was noticed that adversaries may adopt side-channel attacks to threaten these existing conventional public-key systems (including CLPKS, RCLPKS and RCLPKS-ORA). Fortunately, leakage-resilient cryptography offers a solution to resist such attacks. In this article, the first leakage-resilient revocable certificateless encryption scheme with an ORA, termed LR-RCLE-ORA scheme, is proposed. The proposed scheme is formally shown to be semantically secure against three types of adversaries in the RCLPKS and RCLPKS-ORA settings while resisting side-channel attacks. In the proposed scheme, adversaries are allowed to continually extract partial ingredients of secret keys participated in various computational algorithms of the proposed scheme while retaining its security.
Journal:Informatica
Volume 31, Issue 3 (2020), pp. 597–620
Abstract
Very recently, side-channel attacks have threatened all traditional cryptographic schemes. Typically, in traditional cryptography, private/secret keys are assumed to be completely hidden to adversaries. However, by side-channel attacks, an adversary may extract fractional content of these private/secret keys. To resist side-channel attacks, leakage-resilient cryptography is a countermeasure. Identity-based public-key system (ID-PKS) is an attractive public-key setting. ID-PKS settings not only discard the certificate requirement, but also remove the construction of the public-key infrastructure. For solving the user revocation problem in ID-PKS settings, revocable ID-PKS (RID-PKS) setting has attracted significant attention. Numerous cryptographic schemes based on RID-PKS settings have been proposed. However, under RID-PKS settings, no leakage-resilient signature or encryption scheme is proposed. In this article, we present the first leakage-resilient revocable ID-based signature (LR-RIBS) scheme with cloud revocation authority (CRA) under the continual leakage model. Also, a new adversary model of LR-RIBS schemes with CRA is defined. Under this new adversary model, security analysis is made to demonstrate that our LR-RIBS scheme with CRA is provably secure in the generic bilinear group (GBG) model. Finally, performance analysis is made to demonstrate that our scheme is suitable for mobile devices.