Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 1–20
Abstract
Non-programmed decision-making is an activity that requires a number of methods to try to capture the rational behaviour of an aspirant in situations of uncertainty. Thus, there is a varied list of attributes, methods, and mechanisms that are intended to describe the way in which aspirants can be profiled. However, this modelling proves to be complex if it is approached in scenarios based on game mechanics from gamification. For this reason, the following article aims to contribute to the processes of selection of personnel delimited only to the making of non-programmed decisions, through the implementation of game mechanics. In order to model this selection, the purpose of the following study is to carry out the formulation of inference rules based on fuzzy logic in order to capture the tacit transfer of certain types of information in personnel selection processes and to determine aspects that allow the shaping of aspirants. Finally, the results and conclusions obtained are presented.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 21–39
Abstract
The heliostat field of Solar Central Receiver Systems takes up to 50% of the initial investment and can cause up to 40% of energetic loss in operation. Hence, it must be carefully optimized. Design procedures usually rely on particular heliostat distribution models. In this work, optimization of the promising biomimetic distribution model is studied. Two stochastic population-based optimizers are applied to maximize the optical efficiency of fields: a genetic algorithm, micraGA, and a memetic one, UEGO. As far as the authors know, they have not been previously applied to this problem. However, they could be a good option according to their structure. Additionally, a Brute-Force Grid is used to estimate the global optimum and a Pure-Random Search is applied as a baseline reference. Our empirical results show that many different configurations of the distribution model lead to very similar solutions. Although micraGA exhibits poor performance, UEGO achieves the best results in a reduced time and seems appropriate for the problem at hand.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 41–74
Abstract
The selection of waste lubricant oil regenerative technology regarding the complexity of the technologies and financial issues is a complex problem. Some risk factors exist regarding the ratings of technologies on the effective criteria. The current study tackles the selection of the technology based on fuzzy axiomatic design approach considering risk factors. Shannon entropy significance coefficients are computed for criteria. The problem is first solved by considering all criteria and then supplementary solutions are presented by categorizing the criteria to technical and economic groups. Two types of risk factors are identified for the technologies, i.e. general and specific risk factors.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 75–90
Abstract
The recent introduction of whole-slide scanning systems enabled accumulation of high-quality pathology images into large collections, thus opening new perspectives in cancer research, as well as new analysis challenges. Automated identification of tumour tissue in the whole-slide image enables further use of developed grading systems that classify tumour cell abnormalities and predict tumour developments. In this article, we describe several possibilities to achieve epithelium-stroma classification of tumour tissues in digital pathology images by employing annotated superpixels to train machine learning algorithms. We emphasize that annotating superpixels rather than manually outlining tissue classes in raw images is less time consuming, and more effective way of producing ground truth for computational pathology pipelines. In our approach feature space for supervised learning is created from tissue class assigned superpixels by extracting colour and texture parameters, and applying dimensionality reduction methods. Alternatively, to train convolutional neural network, labelled superpixels are used to generate square image patches by moving fixed size window around each superpixel centroid. The proposed method simplifies the process of ground truth data collection and should minimize the time spent by a skilled expert to perform manual annotation of whole-slide images. We evaluate our method on a private data set of colorectal cancer images. Obtained results confirm that a method produces accurate reference data suitable for the use of different machine learning based classification algorithms.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 91–105
Abstract
The Autoregressive model-based digital inverse filtering technique is applied in non-invasive detection of vocal fold paralysis. The vocal tract filter is modelled using variable order (up to 20) AR model which is adequate to individual characteristics of human vocal properties. This postulates the more accurate estimation of the glottal flow, disturbances of which are direct evidence of the vocal fold paralysis.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 107–124
Abstract
The picture fuzzy set is characterized by three functions expressing the degree of membership, the degree of neutral membership and the degree of non-membership. It was proposed as a generalization of an intuitionistic fuzzy set in order to deal with indeterminate and inconsistent information. In this work, we shall present some novel Dice similarity measures of picture fuzzy sets and the generalized Dice similarity measures of picture fuzzy sets and indicate that the Dice similarity measures and asymmetric measures (projection measures) are the special cases of the generalized Dice similarity measures in some parameter values. Then, we propose the generalized Dice similarity measures-based patterns recognition models with picture fuzzy information. Then, we apply the generalized Dice similarity measures between picture fuzzy sets to building material recognition. Finally, an illustrative example is given to demonstrate the efficiency of the similarity measures for building material recognition.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 125–155
Abstract
The previous adversary models of public key cryptography usually have a nature assumption that permanent/temporary secret (private) keys must be kept safely and internal secret states are not leaked to an adversary. However, in practice, it is difficult to keep away from all possible kinds of leakage on these secret data due to a new kind of threat, called “side-channel attacks”. By side-channel attacks, an adversary could obtain partial information of these secret data so that some existing adversary models could be insufficient. Indeed, the study of leakage-resilient cryptography resistant to side-channel attacks has received significant attention recently. Up to date, no work has been done on the design of leakage-resilient certificateless key encapsulation (LR-CL-KE) or public key encryption (LR-CL-PKE) schemes under the continual leakage model. In this article, we propose the first LR-CL-KE scheme under the continual leakage model. Moreover, in the generic bilinear group (GBG) model, we formally prove that the proposed LR-CL-KE scheme is semantically secure against chosen ciphertext attacks for both Type I and Type II adversaries.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 157–185
Abstract
Interval-valued intuitionistic hesitant fuzzy sets (IVIHFSs) are useful to denote the decision makers’ interval preferred, interval non-preferred and hesitant opinions simultaneously. Considering the application of IVIHFSs, this paper introduces a new decision-making method with interval-valued intuitionistic hesitant fuzzy information that extends the application scopes. To do this, the interval-valued intuitionistic hesitant fuzzy hybrid Shapley weighted averaging (IVIHFHSWA) operator and the interval-valued intuitionistic hesitant fuzzy hybrid Shapley weighted geometric (IVIHFHSWG) operator are defined to aggregate the collective attribute values of alternatives. To reflect the interactions and reduce the complexity of calculating the weights, the 2-additive measures are used to define these two hybrid Shapley weighted operators. To derive the exact weight information of attributes and ordered positions, the associated programming models for determining the optimal 2-additive measures are constructed that are based on the defined Hamming distance measure. To show the feasibility and efficiency of the new method, a practical decision-making problem is offered, which is also used to compare with the previous methods.