Journal:Informatica
Volume 32, Issue 4 (2021), pp. 849–864
Abstract
There exist various types of similarity measures for intuitionistic fuzzy sets in the literature. However, in many studies the interactions among the elements are ignored in the construction of the similarity measure. This paper presents a cosine similarity measure for intuitionistic fuzzy sets by using a Choquet integral model in which the interactions between elements are considered. The proposed similarity measure is applied to some pattern recognition problems and the results are compared with some existing results to demonstrate the effectiveness of this new similarity measure.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 371–397
Abstract
Intuitionistic uncertain linguistic variables (IULVs) are useful to express the qualitative and quantitative recognitions of decision makers. However, after reviewing the previous operational laws on IULVs, we find there are some limitations. To address these issues, we define several new operations on IULVs and give a new ranking method. To improve the utilization of IULVs, this paper defines two Choquet operators: the intuitionistic uncertain linguistic symmetrical Choquet averaging (IULSCA) operator and the intuitionistic uncertain linguistic symmetrical Choquet geometric mean (IULSCGM) operator, which can address the internal correlations among elements. To globally reflect the interactive characteristics of the importance of elements, two generalized Shapley intuitionistic uncertain linguistic symmetrical Choquet operators are presented. Subsequently, a new distance measure is defined, which is then used to build models to ascertain fuzzy measures on decision maker and criteria sets to address the case where the weighting information is partly known. After that, a new procedure to intuitionistic uncertain linguistic group decision making is developed. Finally, a specific example is offered to illustrate the practicality of the new procedure, and the comparison analysis is also made.
Journal:Informatica
Volume 27, Issue 1 (2016), pp. 111–139
Abstract
With respect to multi-attribute decision making under uncertain linguistic environment, a new interval-valued 2-tuple linguistic representation model is introduced. To deal with the situation where the elements in a set are interdependent, several generalized interval-valued 2-tuple linguistic correlated aggregation operators are defined. It is worth pointing out that some interval-valued 2-tuple linguistic operators based on additive measures are special cases of our operators. Meanwhile, several special cases and desirable properties are discussed. Furthermore, models based on the correlation coefficient are constructed, by which the optimal weight vector can be obtained. Moreover, an approach to multi-attribute group decision making with uncertain linguistic information is developed. Finally, an example is selected to show the effectivity and feasibility of the developed procedure.
Journal:Informatica
Volume 25, Issue 4 (2014), pp. 617–642
Abstract
Abstract
With respect to interval-valued hesitant fuzzy multi-attribute decision making, this study first presents a new ranking method for interval-valued hesitant fuzzy elements. In order to obtain the comprehensive values of alternatives, two induced generalized interval-valued hesitant fuzzy hybrid operators based on the Shapley function are defined, which globally consider the importance of elements and their ordered positions as well as reflect the interactions between them. If the weight information is incompletely known, models for the optimal weight vectors on the attribute set and on the ordered set are respectively established. Furthermore, an approach to interval-valued hesitant fuzzy multi-attribute decision making with incomplete weight information and interactive characteristics is developed. Finally, an illustrative example is provided to show the concrete application of the proposed procedure.
Journal:Informatica
Volume 12, Issue 1 (2001), pp. 89–100
Abstract
The new method for the construction of partial order on the set of multicriteria alternatives is presented. This method belongs to the family of Verbal Decision Analysis methods and gives a more efficient means of problem solution. The method is based on psychologically valid operations for information elicitation from a decision maker: comparisons of two distances between the evaluations on the ordinal scales of two criteria. The information received from a decision maker is used for the construction of a binary relation between a pair of alternatives which yields preference, indifference and incomparability relations. The notion of a method decisive power is introduced. The illustrative example is given.