Intensity Modulated Radiation Therapy is an effective cancer treatment. Models based on the Generalized Equivalent Uniform Dose (gEUD) provide radiation plans with excellent planning target volume coverage and low radiation for organs at risk. However, manual adjustment of the parameters involved in gEUD is required to ensure that the plans meet patient-specific physical restrictions. This paper proposes a radiotherapy planning methodology based on bi-level optimization. We evaluated the proposed scheme in a real patient and compared the resulting irradiation plans with those prepared by clinical planners in hospital devices. The results in terms of efficiency and effectiveness are promising.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 3 (2018), pp. 499–516
Abstract
Crossover operators play a very important role by creation of genetic algorithms (GAs) which are applied in various areas of computer science, including combinatorial optimization. In this paper, fifteen genetic crossover procedures are designed and implemented using a modern C# programming language. The computational experiments have been conducted with these operators by solving the famous combinatorial optimization problem – the quadratic assignment problem (QAP). The results of the conducted experiments on the characteristic benchmark instances from the QAP instances library QAPLIB illustrate the relative performance of the examined crossover operations.
All crossover procedures are publicly available with the intention that the GA researchers will choose a procedure which suits the individual demand at the highest degree.
Journal:Informatica
Volume 25, Issue 1 (2014), pp. 155–184
Abstract
In the paper we propose a genetic algorithm based on insertion heuristics for the vehicle routing problem with constraints. A random insertion heuristic is used to construct initial solutions and to reconstruct the existing ones. The location where a randomly chosen node will be inserted is selected by calculating an objective function. The process of random insertion preserves stochastic characteristics of the genetic algorithm and preserves feasibility of generated individuals. The defined crossover and mutation operators incorporate random insertion heuristics, analyse individuals and select which parts should be reinserted. Additionally, the second population is used in the mutation process. The second population increases the probability that the solution, obtained in the mutation process, will survive in the first population and increase the probability to find the global optimum. The result comparison shows that the solutions, found by the proposed algorithm, are similar to the optimal solutions obtained by other genetic algorithms. However, in most cases the proposed algorithm finds the solution in a shorter time and it makes this algorithm competitive with others.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 237–258
Abstract
Recently, genetic algorithms (GAs) and their hybrids have achieved great success in solving difficult combinatorial optimization problems. In this paper, the issues related to the performance of the genetic search in the context of the grey pattern problem (GPP) are discussed. The main attention is paid to the investigation of the solution recombination, i.e., crossover operators which play an important role by developing robust genetic algorithms. We implemented seven crossover operators within the hybrid genetic algorithm (HGA) framework, and carried out the computational experiments in order to test the influence of the recombination operators to the genetic search process. We examined the one point crossover, the uniform like crossover, the cycle crossover, the swap path crossover, and others. A so-called multiple parent crossover based on a special type of recombination of several solutions was tried, too. The results obtained from the experiments on the GPP test instances demonstrate promising efficiency of the swap path and multiple parent crossovers.
Journal:Informatica
Volume 14, Issue 3 (2003), pp. 323–336
Abstract
This paper analyses coupled control of a nonlinear, time‐varying plant. Uncoupled and coupled direct adaptive controllers, based on fuzzy logics, are synthesized to control the water level and the air pressure in a closed tank. The satisfactory efficiency of the controllers is experimentally demonstrated running the plant under the different working conditions. Coupled fuzzy controllers are compared with the uncoupled fuzzy controllers.