1 Introduction
2 Preliminaries
Definition 1 (See Atanassov, 1986, 1989).
(1)
\[ A=\big\{\big\langle x,{\mu _{A}}(x),{\nu _{A}}(x)\big\rangle \hspace{0.2778em}\big|\hspace{0.2778em}x\in X\big\},\]Definition 2 (See Atanassov, 1989).
(3)
\[ {\mathit{IFC}^{1}}(A,B)=\frac{1}{n}{\sum \limits_{j=1}^{n}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})}}.\](4)
\[\begin{array}{l}\displaystyle {\mathit{IFC}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\frac{1}{n}{\sum \limits_{j=1}^{n}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})+{\pi _{A}}({x_{j}}){\pi _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})+{\pi _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})+{\pi _{B}^{2}}({x_{j}})}}.\end{array}\](5)
\[\begin{array}{l}\displaystyle {\mathit{IFCS}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle \frac{1}{n}{\sum \limits_{j=1}^{n}}\cos \bigg\{\frac{\pi }{2}\big[\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\vee \big|{\pi _{A}}({x_{j}})-{\pi _{B}}({x_{j}})\big|\big]\bigg\},\end{array}\](6)
\[\begin{array}{l}\displaystyle {\mathit{IFCS}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle \frac{1}{n}{\sum \limits_{j=1}^{n}}\cos \bigg\{\frac{\pi }{4}\big[\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|+\big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|+\big|{\pi _{A}}({x_{j}})-{\pi _{B}}({x_{j}})\big|\big]\bigg\}.\end{array}\](7)
\[ {\mathit{IFCT}^{1}}(A,B)=\frac{1}{n}{\sum \limits_{j=1}^{n}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\big(\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\big)\bigg],\](8)
\[\begin{array}{l}\displaystyle {\mathit{IFCT}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle \frac{1}{n}{\sum \limits_{j=1}^{n}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\big(\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\vee \big|{\pi _{A}}({x_{j}})-{\pi _{B}}({x_{j}})\big|\big)\bigg].\end{array}\](9)
\[ {\mathit{IFC}^{1}}(A,B)={\sum \limits_{j=1}^{n}}{\omega _{j}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})}},\](10)
\[\begin{array}{l}\displaystyle {\mathit{IFC}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}={\sum \limits_{j=1}^{n}}{\omega _{j}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})+{\pi _{A}}({x_{j}}){\pi _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})+{\pi _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})+{\pi _{B}^{2}}({x_{j}})}},\end{array}\](11)
\[\begin{array}{l}\displaystyle {\mathit{WIFCS}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cos \bigg\{\frac{\pi }{2}\big[\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\vee \big|{\pi _{A}}({x_{j}})-{\pi _{B}}({x_{j}})\big|\big]\bigg\},\end{array}\](12)
\[\begin{array}{l}\displaystyle {\mathit{WIFCS}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cos \bigg\{\frac{\pi }{4}\big[\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|+\big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|+\big|{\pi _{A}}({x_{j}})-{\pi _{B}}({x_{j}})\big|\big]\bigg\},\end{array}\](13)
\[\begin{array}{l}\displaystyle {\mathit{WIFCT}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}={\sum \limits_{j=1}^{n}}{\omega _{j}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\big(\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\bigg)\bigg],\end{array}\](14)
\[\begin{array}{l}\displaystyle {\mathit{WIFCT}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\big(\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\vee \big|{\pi _{A}}({x_{j}})-{\pi _{B}}({x_{j}})\big|\big)\bigg],\end{array}\]3 Some Similarity Measure Based on Cosine Function for Picture Fuzzy Sets
Definition 3 (See Cuong, 2014).
(15)
\[ A=\big\{\big\langle x,{\mu _{A}}(x),{\eta _{A}}(x),{\nu _{A}}(x)\big\rangle \hspace{0.2778em}\big|\hspace{0.2778em}x\in X\big\},\]3.1 Cosine Similarity Measure for Picture Fuzzy Sets
(16)
\[ {\mathit{PFC}^{1}}(A,B)=\displaystyle \frac{1}{n}{\sum \limits_{j=1}^{n}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\eta _{A}}({x_{j}}){\eta _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\eta _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\eta _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})}}.\]Proof.
-
(1) It is obvious that the proposition is true according to the cosine value.
-
(2) It is obvious that the proposition is true.
-
(3) When $A=B$, there are ${\mu _{A}}({x_{j}})={\mu _{B}}({x_{j}})$, ${\eta _{A}}({x_{j}})={\eta _{B}}({x_{j}})$ and ${\nu _{A}}({x_{j}})={\nu _{B}}({x_{j}})$ for $j=1,2,\dots ,n$. So ${C_{\mathit{PFS}}^{1}}(A,B)=1$. Therefore, we have finished the proofs.
Proof.
(17)
\[ {\mathit{WPFC}^{1}}(A,B)=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\eta _{A}}({x_{j}}){\eta _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\eta _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\eta _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})}},\](18)
\[\begin{array}{l}\displaystyle {\mathit{PFC}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle \frac{1}{n}{\sum \limits_{j=1}^{n}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\eta _{A}}({x_{j}}){\eta _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})+{\rho _{A}}({x_{j}}){\rho _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\eta _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})+{\rho _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\eta _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})+{\rho _{B}^{2}}({x_{j}})}},\\ {} \displaystyle {\mathit{WPFC}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\frac{{\mu _{A}}({x_{j}}){\mu _{B}}({x_{j}})+{\eta _{A}}({x_{j}}){\eta _{B}}({x_{j}})+{\nu _{A}}({x_{j}}){\nu _{B}}({x_{j}})+{\rho _{A}}({x_{j}}){\rho _{B}}({x_{j}})}{\sqrt{{\mu _{A}^{2}}({x_{j}})+{\eta _{A}^{2}}({x_{j}})+{\nu _{A}^{2}}({x_{j}})+{\rho _{A}^{2}}({x_{j}})}\sqrt{{\mu _{B}^{2}}({x_{j}})+{\eta _{B}^{2}}({x_{j}})+{\nu _{B}^{2}}({x_{j}})+{\rho _{B}^{2}}({x_{j}})}},\end{array}\]3.2 Similarity Measures of Picture Fuzzy Sets Based on Cosine Function
Definition 4.
(19)
\[ {\mathit{PFCS}^{3}}(A,B)=\frac{1}{n}\hspace{-0.1667em}{\sum \limits_{j=1}^{n}}\hspace{-0.1667em}\cos \bigg\{\hspace{-0.1667em}\frac{\pi }{2}\hspace{-0.1667em}\left(\substack{|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})|\vee |{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})|\vee \\ {} |{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})|\vee |{\rho _{A}}({x_{j}})-{\rho _{B}}({x_{j}})|}\right)\bigg\},\](20)
\[ {\mathit{PFCS}^{4}}(A,B)=\frac{1}{n}\hspace{-0.1667em}{\sum \limits_{j=1}^{n}}\hspace{-0.1667em}\cos \bigg\{\hspace{-0.1667em}\frac{\pi }{4}\hspace{-0.1667em}\left(\substack{|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})|+|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})|+\\ {} |{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})|+|{\rho _{A}}({x_{j}})-{\rho _{B}}({x_{j}})|}\right)\bigg\}.\]Proposition 1.
Proof.
(21)
\[\begin{array}{l}\displaystyle {\mathit{WPFCS}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cos \bigg\{\frac{\pi }{2}\big[\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\big]\bigg\},\end{array}\](22)
\[\begin{array}{l}\displaystyle {\mathit{WPFCS}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\hspace{-0.1667em}\cos \hspace{-0.1667em}\bigg\{\frac{\pi }{4}\big[\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|+\big|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})\big|+\big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\big]\bigg\},\end{array}\](23)
\[ {\mathit{WPFCS}^{3}}(A,B)=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cos \bigg\{\frac{\pi }{2}\left(\substack{|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})|\vee |{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})|\vee \\ {} |{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})|\vee |{\rho _{A}}({x_{j}})-{\rho _{B}}({x_{j}})|}\right)\bigg\},\](24)
\[ {\mathit{WPFCS}^{4}}(A,B)=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cos \bigg\{\frac{\pi }{4}\left(\substack{|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})|+|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})|+\\ {} |{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})|+|{\rho _{A}}({x_{j}})-{\rho _{B}}({x_{j}})|}\right)\bigg\},\]Proposition 2.
3.3 Similarity Measures of Picture Fuzzy Sets Based on Cotangent Function
(25)
\[\begin{array}{l}\displaystyle {\mathit{PFCT}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle \frac{1}{n}{\sum \limits_{j=1}^{n}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\big(\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\big)\bigg],\end{array}\](26)
\[\begin{array}{l}\displaystyle {\mathit{PFCT}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}=\frac{1}{n}{\sum \limits_{j=1}^{n}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\left(\substack{\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})\big|\vee \\ {} \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\vee \big|{\rho _{A}}({x_{j}})-{\rho _{B}}({x_{j}})\big|}\right)\bigg].\end{array}\](27)
\[\begin{array}{l}\displaystyle {\mathit{WPFCT}^{1}}(A,B)\\ {} \displaystyle \hspace{1em}=\displaystyle {\sum \limits_{j=1}^{n}}{\omega _{j}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\big(\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})\big|\vee \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\big)\bigg],\end{array}\](28)
\[\begin{array}{l}\displaystyle {\mathit{WPFCT}^{2}}(A,B)\\ {} \displaystyle \hspace{1em}={\sum \limits_{j=1}^{n}}{\omega _{j}}\cot \bigg[\frac{\pi }{4}+\frac{\pi }{4}\left(\substack{\big|{\mu _{A}}({x_{j}})-{\mu _{B}}({x_{j}})\big|\vee \big|{\eta _{A}}({x_{j}})-{\eta _{B}}({x_{j}})\big|\vee \\ {} \big|{\nu _{A}}({x_{j}})-{\nu _{B}}({x_{j}})\big|\vee \big|{\rho _{A}}({x_{j}})-{\rho _{B}}({x_{j}})\big|}\right)\bigg],\end{array}\]4 Numerical Example
Table 1
${A_{1}}$ | ${A_{2}}$ | ${A_{3}}$ | ${A_{4}}$ | A | |
${S_{1}}$ | (0.53,0.33,0.09) | (1.00,0.00,0.00) | (0.91,0.03,0.02) | (0.85,0.09,0.05) | (0.90,0.05,0.02) |
${S_{2}}$ | (0.89,0.08,0.03) | (0.13,0.64,0.21) | (0.07,0.09,0.05) | (0.74,0.16,0.10) | (0.68,0.08,0.21) |
${S_{3}}$ | (0.42,0.35,0.18) | (0.03,0.82,0.13) | (0.04,0.85,0.10) | (0.02,0.89,0.05) | (0.05,0.87,0.06) |
${S_{4}}$ | (0.08,0.89,0.02) | (0.73,0.15,0.08) | (0.68,0.26,0.06) | (0.08,0.84,0.06) | (0.13,0.75,0.09) |
${S_{5}}$ | (0.33,0.51,0.12) | (0.52,0.31,0.16) | (0.15,0.76,0.07) | (0.16,0.71,0.05) | (0.15,0.73,0.08) |
${S_{6}}$ | (0.17,0.53,0.13) | (0.51,0.24,0.21) | (0.31,0.39,0.25) | (1.00,0.00,0.00) | (0.91,0.03,0.05) |
Table 2
Similarity measures | $({A_{1}},A)$ | $({A_{2}},A)$ | $({A_{3}},A)$ | $({A_{4}},A)$ |
${\mathit{WPFC}^{1}}({A_{i}},A)$ | 0.813 | 0.656 | 0.787 | 0.994 |
${\mathit{WPFC}^{2}}({A_{i}},A)$ | 0.810 | 0.656 | 0.638 | 0.993 |
${\mathit{WPFCS}^{1}}({A_{i}},A)$ | 0.813 | 0.765 | 0.762 | 0.992 |
${\mathit{WPFCS}^{2}}({A_{i}},A)$ | 0.840 | 0.765 | 0.831 | 0.991 |
${\mathit{WPFCS}^{3}}({A_{i}},A)$ | 0.813 | 0.765 | 0.709 | 0.992 |
${\mathit{WPFCS}^{4}}({A_{i}},A)$ | 0.813 | 0.757 | 0.707 | 0.989 |
${\mathit{WPFCT}^{2}}({A_{i}},A)$ | 0.486 | 0.442 | 0.469 | 0.666 |
${\mathit{WPFCT}^{2}}({A_{i}},A)$ | 0.486 | 0.442 | 0.440 | 0.665 |