Pub. online:17 Dec 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 1 (2022), pp. 55–80
Abstract
Ligand Based Virtual Screening methods are used to screen molecule databases to select the most promising compounds for a query. This is performed by decision-makers based on the information of the descriptors, which are usually processed individually. This methodology leads to a lack of information and hard post-processing dependent on the expert’s knowledge that can end up in the discarding of promising compounds. Consequently, in this work, we propose a new multi-objective methodology called MultiPharm-DT where several descriptors are considered simultaneously and whose results are offered to the decision-maker without effort on their part and without relying on their expertise.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 135–152
Abstract
The aim of this paper is to make a proposal for a new extension of the MULTIMOORA method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension of classical fuzzy sets in order to enable solving a particular class of decision-making problems. Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positive membership function, which denotes the satisfaction degree of the element x to the property corresponding to the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more efficient for solving some specific problems whose solving requires assessment and prediction. The suitability of the proposed approach is presented through an example.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 1 (2017), pp. 181–192
Abstract
The aim of this manuscript is to propose a new extension of the MULTIMOORA method adapted for usage with a neutrosophic set. By using single valued neutrosophic sets, the MULTIMOORA method can be more efficient for solving complex problems whose solving requires assessment and prediction, i.e. those problems associated with inaccurate and unreliable data. The suitability of the proposed approach is presented through an example.
Journal:Informatica
Volume 27, Issue 2 (2016), pp. 451–462
Abstract
A new heuristic algorithm for solution of bi-objective discrete competitive facility location problems is developed and experimentally investigated by solving different instances of a facility location problem for firm expansion. The proposed algorithm is based on ranking of candidate locations for the new facilities, where rank values are dynamically adjusted with respect to behaviour of the algorithm. Results of the experimental investigation show that the proposed algorithm is suitable for the latter facility location problems and provides good results in sense of accuracy of the approximation of the true Pareto front.
Journal:Informatica
Volume 23, Issue 1 (2012), pp. 1–25
Abstract
Multi-Objective Optimization takes care of different objectives with the objectives keeping their own units. The internal mechanical solution of a Ratio System, producing dimensionless numbers, is preferred. The ratio system creates the opportunity to use a second approach: a Reference Point Theory, which uses the ratios of the ratio system. This overall theory is called MOORA (Multi-Objective Optimization by Ratio Analysis). The results are still more convincing if a Full Multiplicative Form is added forming MULTIMOORA. The control by three different approaches forms a guaranty for a solution being as non-subjective as possible. MULTIMOORA, tested after robustness, showed positive results.