Stochastic Optimization Algorithms for Support Vector Machines Classification
Volume 20, Issue 2 (2009), pp. 173–186
Pub. online: 1 January 2009
Type: Research Article
Received
1 September 2008
1 September 2008
Accepted
1 January 2009
1 January 2009
Published
1 January 2009
1 January 2009
Abstract
In this paper, we consider the problem of semi-supervised binary classification by Support Vector Machines (SVM). This problem is explored as an unconstrained and non-smooth optimization task when part of the available data is unlabelled. We apply non-smooth optimization techniques to classification where the objective function considered is non-convex and non-differentiable and so difficult to minimize. We explore and compare the properties of Simulated Annealing and of Simultaneous Perturbation Stochastic Approximation (SPSA) algorithms (SPSA with the Lipschitz Perturbation Operator, SPSA with the Uniform Perturbation Operator, Standard Finite Difference Approximation) for semi-supervised SVM classification. Numerical results are given, obtained by running the proposed methods on several standard test problems drawn from the binary classification literature. The performance of the classifiers were evaluated by analyzing Receiver Operating Characteristics (ROC).