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Abstract. In this paper, we consider the problem of semi-supervised binary classification by Sup-
port Vector Machines (SVM). This problem is explored as an unconstrained and non-smooth
optimization task when part of the available data is unlabelled. We apply non-smooth optimiza-
tion techniques to classification where the objective function considered is non-convex and non-
differentiable and so difficult to minimize. We explore and compare the properties of Simulated
Annealing and of Simultaneous Perturbation Stochastic Approximation (SPSA) algorithms (SPSA
with the Lipschitz Perturbation Operator, SPSA with the Uniform Perturbation Operator, Standard
Finite Difference Approximation) for semi-supervised SVM classification. Numerical results are
given, obtained by running the proposed methods on several standard test problems drawn from
the binary classification literature. The performance of the classifiers were evaluated by analyzing
Receiver Operating Characteristics (ROC).

Keywords: support vector machine, semi-supervised classification, stochastic approximation,
simulated annealing.

1. Introduction

Multidimensional data constantly appear in engineering, medicine, economics, ecology,
and many other areas. Modern technologies in many scientific fields allow us to produce
and store large data sets with ever increasing sample sizes and dimensions. The increas-
ing amount of data used for analysis naturally leads to the search for efficient approaches.
The common data mining technique for finding hidden patterns in data is classification
analysis. There are a lot of classification problems in webpage classification, bioinformat-
ics, image classification, business risk identification, credit scoring where data labelling
is hard or expensive, while unlabeled data is often abundant and cheap to collect. If clas-
sification results can be directly seen in a two-dimensional space, it will be great help for
classification users. A simple and direct idea for visualizing high-dimensional data is to
reduce its dimensionality to two or three dimensions by using some dimension reduction
algorithms (Bernatavičiene et al., 2006, 2007). When data points consist of exactly two
sets: one set that has been labelled by a decision maker and the other that is not classified,
but belongs to one known category we have a traditional semi-supervised classification
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problem. The goal of semi-supervised classification is to use unlabeled data to improve
the performance of standard supervised learning algorithms. Because semi-supervised
classification requires less human effort and generally achieves higher accuracy this kind
of classification is very important both in theory and in practice. Support Vector Ma-
chines (SVMs) are an efficient approach for semi-supervised classification as well as
for clustering, time series, and regression analysis. In the standard binary classification
problem, a set of training data (ui, yi), . . . , (um, ym) is observed, where the input set
of points is ui ∈ U ⊂ �n, the yi is either +1 or −1, indicating the class to which the
point ui belongs, yi ∈ {+1, −1}. The learning task is to create the classification rule f :
U → {+1, −1} that will be used to predict the labels for new inputs. The basic idea of
Support Vector Machine classification is to find a maximal margin separating hyperplane
between two classes. It was described by Cortes and Vapnik (1995). The standard binary
SVM classification problem is shown visually in Fig. 1.

We denote by ‖ · ‖ the Euclidean norm in �n and by 〈w, u〉 the inner product of the
vectors w and u throughout the paper. For a linearly separable case, the support vector
algorithm simply looks for the separating hyperplane with the largest margin. The dis-
tance between two hyperplanes H1 and H2 is called a margin and equal to 2

‖w‖ , where
w is the normal vector of a separating hyperplane. Therefore the goal of classification

is to maximize the margin width 2
‖w‖ which is equivalent to minimizing ‖w‖2

2 . Now we
can formulate our problem as a standard quadratic programming problem (Cristianini and
Shawe-Taylor, 1987). It was described by Cortes and Vapnik (1995):

min
w,b

1
2

‖w‖2, (1)

subject to

yi
(

〈w, ui〉 + b
)

� 1, i = 1, . . . , m.

Fig. 1. Separating hyperplanes for a linearly separable case.
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Since in many applications to label data is not an easy job we may rewrite problem (1)
in the following unconstrained form using penalty function (Astorino and Fuduli, 2007):

min
w∈�n,b∈�

f(w, b), (2)

where

f(w, b) =
1
2

‖w‖2 + C1

p∑
i=1

max
(
0, 1 − yi(〈w, ui〉 + b)

)

+ C2

m+p∑
i=p+1

max
(
0, 1 − | 〈w, ui〉 + b|

)
,

where C1 � C2 � 0 are certain penalty coefficients, p is the size of training set, m

is the size of testing set. The first two terms in the objective function f(w, b) define
the standard SVM. The third term incorporates unlabelled data. The loss over labelled
and unlabelled examples is weighted by two parameters C1 and C2. This form seems
advantageous especially when the input dataset is very large.

On the other hand, the function f(w, b) is non-differentiable and, moreover, due to
the third term involving the unlabelled points, it is even non-convex and multiextremal in
general. Since the objective function of the unconstrained SVM model is a non-smooth
function, most of powerful methods of smooth optimization cannot be used to solve it. As-
torino and Fuduli (2007) applied a bundle type optimization method for semi-supervised
classification problems. For the unsupervised and supervised data classification Bagirov
et al. (2002, 2003) described the combination of discrete gradient methods with the cut-
ting angle method for global minimization. In this paper, we implement and compare
several stochastic optimization algorithms for minimizing the non-differentiable objec-
tive function (2). Stochastic Approximation and Simulated Annealing are well-known
approaches for non-smooth optimization. Although the Stochastic Approximation is cre-
ated as a local optimization approach, it also distinguishes itself by some global search
properties that are very useful for semi-supervised SVM classification (Maryak and Chin,
2001; Chen, 2002). To this end we explore and compare properties of Simulated Anneal-
ing (SA) and of the Simultaneous Perturbation Stochastic Approximation (SPSA) algo-
rithms (SPSA with the Lipschitz Perturbation Operator (SPSAL), SPSA with the Uniform
Perturbation Operator (SPSAU), Standard Finite Difference Approximation (FDSA)).

We judge on the applicability of these algorithms to solve problem (2) by the training
error and analysis of Receiver Operating Characteristics (ROC). The training error is just
the measured error rate on the training data and expressed as follows:

Remp(b) =
1
2p

p∑
i=1

∣∣yi − h(w, b)
∣∣, (3)

where h(w, b) = 〈w, u〉 + b. The “loss” is the term 1
2 |yi − h(w, b)|.
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The evaluation is based on the following criteria:

sensitivity =
TP

TP + FN
, specificity =

TN

TN + FP
,

overall accuracy =
TP + TN

TP + TN + FP + FN
,

test error =
FP + FN

TP + TN + FP + FN
,

where TP (true positive) means number of +1 class assigned to +1 class; FP (false
positive) stands for the number of −1 class assigned to +1 class; TN (true negative) –
the number of −1 class assigned to −1 class; FN (false negative) means the number of
+1 class assigned to −1 class.

2. Stochastic Techniques for Non-Smooth Optimization

The methods of stochastic approximation based on the ideas of smoothing and the
stochastic gradient. The solution of (2) is obtained by minimizing the smoothed func-
tion, and changing the smoothing parameter in an appropriate way (Robins and Monro,
1951; Kiefer and Wolfowitz, 1952; Blum, 1954; Dvoretzky, 1956; Yudin, 1965; Wasan,
1969; Ermoliev, 1976; Mikhalevitch et al., 1987; Ermoliev et al., 1995; Sakalauskas,
2002; Kushner and Yin, 2003; Bartkute and Sakalauskas, 2007; etc.).

Let us introduce the stochastic approximation sequence:

xt+1 = xt − ρt · gt, t = 1, 2, . . . , (4)

where gt is the value of the stochastic gradient estimator at the current point xt, ρt is a
scalar multiplier in the iteration t, and x0 is the initial point. This scheme is the same for
different stochastic approximation algorithms that differ only by the approach to stochas-
tic gradient estimation.

To solve problem (2), we consider and compare three stochastic approximation
methods:

SPSAL – SPSA algorithm with a Lipschitz perturbation operator and the stochastic
gradient is as follows (Bartkutė and Sakalauskas, 2006):

g(x, σ, ξ) =
(f(x + σξ) − f(x))ξ

σ‖ξ‖ , (5)

where ξ is a vector uniformly distributed in the unit ball.
SPSAU – SPSA algorithm with a uniform perturbation operator and the stochastic

gradient is expressed as follows (Mikhalevitch et al., 1987):

g(x, σ, ξ) =
(f(x + σ · ξ) − f(x − σ · ξ))ξ

2σ
, (6)
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where ξ is a vector uniformly distributed in the hypercube [−1; 1]n.
FDSA – Finite Difference Stochastic Approximation algorithm and the stochastic gra-

dient is a vector with the components (Mikhalevitch et al., 1987):

gi(x, σ, ξ, υ) =
f(x + σ · ξ + υ · εi) − f(x + σ · ξ − υ · εi)

2υ
, (7)

where ξ is the same as in (5), εt = (0, 0, 0, . . . , 1, . . . , 0), t = 1, n, is the vector with
zero components except the ith one, which is equal to 1, υ > 0 and σ > 0 are the values
of the finite difference and perturbation parameters, respectively.

The regulation conditions of step length and the perturbation operator that guar-
antee the convergence of the stochastic approximation algorithm

∑∞
t=1 ρt = ∞,∑∞

t=1 ρ2
t < ∞, σt → 0, |σt −σt−1|

ρt
→ 0, ρt

σt
→ 0 have been determined. The rate of

convergence of stochastic approximation for objective functions with sharp minimum
E‖xt − x ∗ ‖2 = O(t−β), where 1 � β < 2, have been proved by theoretical and
experimental ways (see, e.g., Bartkute and Sakalauskas, 2007). Although the stochas-
tic approximation converges locally, it stands out by the property of global convergence
(Maryak and Chin, 2001; Chen, 2002). The probability to hit to the attraction zone of
global minimum can be improved by algorithm parameter regulation. SPSA algorithm
with the Metropolis rule was applied in the optimization of the automated recognition
system of ischemic stroke in computed tomography images (Grigaitis et al., 2007).

Simulated Annealing (SA) is widely applied in multiextremal problems. Conditions
of global convergence of SA are studied by many authors (Granville et al., 1994; Yang,
2000; etc.). We use the modification of SA, developed by Yang (2000), where the function
regulating the neighbourhood depth of solution is introduced together with the tempera-
ture regulation function. The latter property enables us to improve the rate of convergence
(Felinskas and Sakalauskas, 2003). The procedure of the SA algorithm consists of the
following steps. Let D ⊂ �n be a bounded set and an initial point x0 ∈ D, an initial
temperature value T0 > 0, a kind of temperature-dependent generation probability den-
sity function, a corresponding temperature updating function, and a sequence {ρt, t � 0}
of monotonically decreasing positive numbers, describing neighbouring states. Calculate
f(x0). In the current iteration t we generate a random vector zt by using the generation
probability density function. The points zt

iare rejected if qt ∈ D or there exists i such
that ‖zt

i ‖ < ρt, 1 � i � n, where zt
i is the ith component of the vector zt. Other-

wise, generate a new trial point qt by adding the random vector zt to the current iteration
point xt,

qt = xt + zt. (8)

The Metropolis acceptance criterion is used to determine a new iteration point xt+1

(Metropolis et al., 1953). Specifically, generate a random number κ with a uniform dis-
tribution over [0,1], and then calculate the probability P (qt, xt, Tt) of accepting the trial
point qt as the new iteration point xt+1, given xt and Tt,

P (qt, xt, Tt) = min
{

1, exp
(f(xt) − f(qt)

Tt

)}
. (9)
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If κ � P (qt, xt, Tt), set xt+1 = qt and f(xt+1) = f(qt); otherwise, set xt+1 =
xt and f(xt+1) = f(xt). The optimization procedure is terminated, if the prescribed
termination condition is satisfied.

Thus, by applying the generation mechanism and the Metropolis acceptance criterion,
the SA algorithm produces two sequences of random points. These are the sequence
{qt, t � 0} of trial points generated by (8), and the sequence {xt, t � 0} of iteration
points determined by applying the Metropolis acceptance criterion. These two sequences
of random variables depend all on the temperature sequence {Tt, t � 0} determined by
the temperature updating function, the state neighbouring sequence {ρt, t � 0}, and the
approach of random vector generation.

The sequence {ρt, t � 0} of positive numbers is used to impose a lower bound
on the random vector, generated at each iteration, for obtaining the random trial point.
This lower bound should be small enough and monotonically decreasing as the anneal-
ing proceeds. Since the temperature-dependent generation probability density function is
used to generate random trial points and since only one trial point is generated at each
temperature value, the SA algorithm considered is characterized by a non-homogeneous
continuous-state Markov chain. The convergence conditions of SA were studied by Yang
(2000) who suggested several updating functions of method parameters, which ensure the
convergence of the method.

We apply the next updating functions in testing our approach. Let ρt = ρ0 · t− λ
u·n for

all t � 1 be the sequence used to impose lower bounds on the random vectors generated in
the SA algorithm, where u > 1, 0 < λ < u, 0 < ρ0 < min1�i�n

maxx,q∈D |xi −qi|. Let
the temperature-dependent generation probability density function p(· , Tt) be given by

p(z, Tt) =
n∏

i=1

(a − 1)
2Tt

( |zi|
Tt

+ 1
) (

log
( |zi|

Tt
+ 1

))d

, z ∈ �n, d > 1. (10)

Then, for any initial point x0 ∈ D, the sequence {f(xt); t � 0} of objective function
values converges in probability to the global minimum f ∗, if the temperature sequence
{Tt, t � 0} determined by the temperature updating function satisfies the following con-
dition:

Tt = T0 exp
(

− l · t
1

d·n

)
, i = 1, 2, . . . , (11)

where T0 > 0 is the initial temperature value and l > 0 is the given real number (Yang,
2000). Typically a different form of the temperature updating function has to be used
with respect to a different kind of the generation probability density function in order to
ensure the global convergence of the corresponding SA algorithm. Furthermore, a flatter
tail of the generation probability function implies a faster decrement of the temperature
sequence determined by the temperature updating function.
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Table 1

Datasets used in the experiments

No. Dataset Dimension (n) Points

1 Linear example (Ziv and Motore, 2004) 2 30

2 Iris (Asuncion and Newman, 2007) 4 150

3 High dimensional case (Zhang et al., 2004) 20 200

4 Ionosphere (Asuncion and Newman, 2007) 34 351

3. Experimental Results

The empirical evidence of our approach, using synthetic and real datasets, and the
achieved results are provided and discussed in this section.

To study the applicability of the stochastic optimization algorithm (SPSAL, SPSAU,
FDSA, SA) to solve problem (2), several standard examples drawn from the classification
literature were explored. Table 1 summarizes the characteristics of the datasets used.

Each test function was minimized M = 100 times by stochastic optimization al-
gorithms described above. Penalty coefficients C1 and C2 in function (2) are equal
to 2.0 and 0.5, respectively, if not said otherwise. The coefficients of sequence (4)
were chosen according to the convergence conditions (Bartkute and Sakalauskas, 2007):

ρt = nmin(a; b
t ), σt =

√
(n+2)(n+3)

n(n+1) min(c; d
tβ ), β = 0.75, where a, b, c, d are differ-

ent for various stochastic approximation algorithms.

EXAMPLE 1 (linear example).
Datasets:

Table 2

Training set

u1 7 7 11 13 8 9 15 7 15 13 14 9 11 15 10

u2 5 11 11 11 10 9 9 7 7 5 4 3 3 3 7

y 1 1 1 1 1 1 − 1 1 − 1 − 1 − 1 − 1 − 1 − 1 1

Table 3

Testing set

u1 4.5 8 7 9 9 16 6 12 10.5 12 12 11 1.5 6 8

u2 6.7 5 10 7 1 2.5 7 0.5 12 13 4 14 0.5 7 1

The linear separating hyperplanes of training data (Example 1) are demonstrated in
Fig. 2. Fig. 3 illustrates that the SPSAL classifier for training and testing datasets is
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Fig. 2. Linear separating hyperplanes of training
data.

Fig. 3. Linear separating hyperplanes of the train-
ing and testing data (SPSAL).

close to an optimal decision boundary. Corresponding averaged separating hyperplanes
for other algorithms are similar: for SPSAU is −0.8861u1 +0.9469u2 +3.6577 = 0, for
FDSA is −0.7458u1 +0.6873u2 +3.6499 = 0, and for SA is −0.67094u1 +0.6701u2 +
3.0231 = 0.

EXAMPLE 2 (high dimensional case). The dataset consists of 200 vectors. The covariate
vectors x are 20-dimensional and generated uniformly from a unit cube [0, 1]20.

The boundary between two classes is a linear function of the first three variables only:
f(u) = 2u1 + 4u2 + 4u3 − 4.8. The boundary between two classes is a linear function
of the first three variables only: {u1, u2, u3} and the remaining seventeen variables are
redundant (Zhang et al., 2004).

Fig. 4 depicts how the averaged training error rate changes for each algorithm as
the training sample size p is increasing. For all stochastic optimization algorithms their
training error decreases significantly.

Fig. 5 illustrates dependence of test error rate on penalty parameter C2 changing the
size of training set. Dependencies are similar for other algorithms. These results show

Fig. 4. The averaged training error rate as the
training sample size p is increasing.

Fig. 5. Overall accuracy rate against the weight
parameter C2 (weight parameter C1 = 2.0,
stochastic optimization algorithm is SPSAU).
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importance of the penalty parameters C1 and C2, and confirm that C2 is recommended
to be chosen not large (Astorino and Fuduli, 2007).

EXAMPLE 3 (Database of Iris Plants; Asuncion and Newman, 2007). The dataset con-
tains 3 classes of 50 instances each, where each class refers to a type of iris plant. One
class is linearly separable from the other two, the latter are not linearly separable from
each other. In our approach for the binary classification we use only two classes of iris
plant: iris Setosa (the class +1) and iris Virginica (the class −1).

The data calculated for sensitivity, specificity, and overall accuracy rates of the clas-
sifiers are summarized in Tables 4 and 5. When the size of the training set is equal to
20, the SA algorithm has the highest sensitivity, specificity, and overall accuracy rates
of 86.0%, 100.0%, and 99.3%, respectively. When the size of the training set was in-
creased to 70, the SA, SPSAU, FDSA algorithms acquired 100% sensitivity, specificity,
and overall accuracy rates.

Linear separating hyperplanes for two-dimensional Iris Plant data are illustrated in
Fig. 6. These results illustrate the applicability of stochastic algorithms in the optimiza-
tion of non-differentiable objective function (2).

EXAMPLE 4 (Johns Hopkins University Ionosphere database; Asuncion and Newman,
2007). The Johns Hopkins University Ionosphere database consists of radar data col-
lected by a system in Goose Bay, Labrador. This system consists of a phased array of
16 highfrequency antennas with the total transmitted power on the order of 6.4 kilowatts.
The targets were free electrons in the ionosphere. “Good” radar returns are those showing

Table 4

Average correct classification rates (p = 20, m = 80)

SPSAL SPSAU FDSA SA

Setosa Virginica Setosa Virginica Setosa Virginica Setosa Virginica

Setosa 11.5 0.0 32.52 0.01 50.0 0.0 50.0 0.0

Virginica 38.5 50.0 17.48 49.99 0.0 50.0 0.0 50.0

Overall accuracy 61.50% 82.51% 100% 100%

Table 5

Average correct classification rates (p = 70, m = 30)

SPSAL SPSAU FDSA SA

Setosa Virginica Setosa Virginica Setosa Virginica Setosa Virginica

Setosa 50.0 0.0 49.99 0.05 50.0 0.0 50.0 0.0

Virginica 0.0 50.0 0.01 49.95 0.0 50.0 0.0 50.0

Overall accuracy 100% 99.94% 100% 100%
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Fig. 6. Linear separating hyperplanes for two-dimensional Iris Plant data.

evidence of some type of structure in the ionosphere. “Bad” returns are those that do not;
their signals pass through the ionosphere. The data contain 351 observation, 34 attributes
and one class attribute. All the 34 attributes are continuous and the target attribute is ei-
ther “good” or “bad” according to the definition summarized above (see, Asuncion and
Newman, 2007).

The calculated sensitivity, specificity, and overall accuracy rates of the classifiers are
summarized in Tables 6 and 7. The SA algorithm has the highest sensitivity, specificity,
and overall accuracy rates. Yao and Yu (2007) for this dataset proposed a new model of
the support vector machines, which is called oblique support vector machines (OSVMs).
To apply stochastic approximation algorithms for Oblique Support Vector Machines and
compare achieved results might be one of the subjects of future research.

Table 6

Average correct classification rates (p = 50, m = 301)

SPSAL SPSAU FDSA SA

Good Bad Good Bad Good Bad Good Bad

Good 91.45 48.14 96.27 40.17 83.31 44.35 89.81 30.43

Bad 34.55 176.86 29.73 184.83 42.69 180.65 36.19 194.57

Overall accuracy 76.44% 80.09% 75.20% 81.02%

Table 7

Average correct classification rates (p = 150, m = 201)

SPSAL SPSAU FDSA SA

Good Bad Good Bad Good Bad Good Bad

Good 110.2 27.44 106.62 12.6 109.55 30.08 110.28 12.68

Bad 15.8 197.56 19.38 212.4 16.45 194.92 15.72 212.32

Overall accuracy 87.68% 90.89% 86.74% 91.91%
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4. Conclusions and Future Work

In this paper, the problem of semi-supervised binary classification by Support Vector Ma-
chines (SVM) has been considered when a part of the available data is unlabelled. The
applicability of stochastic optimization algorithms in such problems has been studied by
computer simulation. We explore three stochastic approximation algorithms (SPSAL, SP-
SAU, FDSA) and the Simulated Annealing (SA) algorithm with the regulation of solution
neighbourhood depth. The simulation studies with several synthetic and real-life datasets
show that these algorithms can be successfully applied to optimizing non-differentiable
loss functions in the classification problems. On the base of the simulation results a con-
clusion can be drawn that SA has higher sensitivity, specificity, and overall accuracy rates
as compared with the stochastic approximation algorithms. The main advantage of the
methods proposed is the possibility to train the classifier on the basis of a large number
of labelled and unlabelled points. This could be useful especially in many real-life clas-
sification problems. It may be concluded that the classification error depends on labelled
and unlabelled data weighting in the objective function (2). The choice of an appropriate
interval for penalty coefficients might be the subject of future research.

There are many cases in the real-life problems when data in the input space is not
linearly separable and non-linear classifiers are needed. Kernel methods use an approach
which increases the flexibility of linear functions by applying a nonlinear mapping from
the input space into a higher dimensional vector space called feature space. To compare
the efficiency of stochastic approximation algorithms described with other nonsmooth
optimization algorithms computing also the CPU time and to use stochastic approxima-
tion methods for solving non-linearly classification problems would be a future research
direction, too.
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Stochastinio optimizavimo metodai atramini ↪u vektori ↪u klasifikavimo
algoritmuose

Vaida BARTKUTĖ-NORKŪNIENĖ

Straipsnyje pasiūlyti keturi stochastinio optimizavimo metodai (SPSAL, SPSAU, FDSA ir SA)
binarinio klasifikavimo uždaviniams spr ↪esti naudojant atramini ↪u vektori ↪u klasifikatori ↪u (Support
Vector Machines). Tokiuose uždaviniuose kvadratinio programavimo uždavinys yra suvedamas ↪i
nediferencijuojamo optimizavimo uždavin↪i be ribojim ↪u taikant nediferencijuojamas baudos funkci-
jas. Norint ↪isitikinti ši ↪u metod ↪u tinkamumu straipsnyje aptariamai problemai spr ↪esti nagrinėjami
keturi klasifikavimo uždaviniai.


