Pub. online:15 Nov 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 741–757
Abstract
Computed tomography coronary angiography (CTCA) is a non-invasive, powerful image processing technique for assessing coronary artery disease. The aim of the paper is to evaluate the diagnostic role of CTCA using optimal scanning parameters and to investigate the effect of low kilovoltage CTCA on the qualitative and quantitative image parameters and radiation dose in overweight and obese patients. Consolidation of knowledge in medicine and image processing was used to achieve the aim, and performance was evaluated in a clinical setting. Elevated body mass index is one of the factors causing increased radiation dose to patients. This study examined the feasibility of 80-kV and 100-kV CTCA in overweight and obese adult patients, comparing radiation doses and image quality versus standardized 100-kV protocols in the group of overweight patients and 120-kV CTCA in the group of obese patients. Qualitative and quantitative image parameters were determined in proximal and distal segments of the coronary arteries. Quantitative assessment was determined by the contrast-to-noise ratio and signal-to-noise ratio. The results of the study showed that in overweight and obese patients, the low dose protocol affords radiation dose reduction of 35% and 41%, respectively. Image quality was found to be diagnostically acceptable in all cases.
Journal:Informatica
Volume 8, Issue 2 (1997), pp. 181–214
Abstract
The aim of investigation was to seek new ways for the analysis of extremal problems. A method of visual analysis of a set of objective function values is proposed. It allows us to find a direction where the variation of function is maximal. The method ensures a high quality of analysis when the number of used values of the objective function is small, and a possibility of identifying a specific character of the objective function. The results of analysis are used in search of a new coordinate system of the extremal problem and in a graphical representation of the observed data. The analysis will lead us to a better optimization strategy.
Journal:Informatica
Volume 8, Issue 1 (1997), pp. 83–118
Abstract
The problem is to discover knowledge in the correlation matrix of parameters (variables) about their groups. Results that deal with deterministic approaches of parameter clustering on the basis of their correlation matrix are reviewed and extended. The conclusions on both theoretical and experimental investigations of various deterministic strategies in solving the problem of extremal parameter grouping are presented. The possibility of finding the optimal number of clusters is considered. The transformation of a general clustering problem into the clustering on the sphere and the relation between clustering of parameters on the basis of their correlation matrix and clustering of vectors (objects, cases) of an n-dimensional unit sphere are analysed.