Pub. online:29 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 311–339
Abstract
The extensions of ordinary fuzzy sets are problematic because they require decimal numbers for membership, non-membership and indecision degrees of an element from the experts, which cannot be easily determined. This will be more difficult when three or more digits’ membership degrees have to be assigned. Instead, proportional relations between the degrees of parameters of a fuzzy set extension will make it easier to determine the membership, non-membership, and indecision degrees. The objective of this paper is to present a simple but effective technique for determining these degrees with several decimal digits and to enable the expert to assign more stable values when asked at different time points. Some proportion-based models for the fuzzy sets extensions, intuitionistic fuzzy sets, Pythagorean fuzzy sets, picture fuzzy sets, and spherical fuzzy sets are proposed, including their arithmetic operations and aggregation operators. Proportional fuzzy sets require only the proportional relations between the parameters of the extensions of fuzzy sets. Their contribution is that these models will ease the use of fuzzy set extensions with the data better representing expert judgments. The imprecise definition of proportions is also incorporated into the given models. The application and comparative analyses result in that proportional fuzzy sets are easily applied to any problem and produce valid outcomes. Furthermore, proportional fuzzy sets clearly showed the role of the degree of indecision in the ranking of alternatives in binomial and trinomial fuzzy sets. In the considered car selection problem, it has been observed that there are minor changes in the ordering of intuitionistic and spherical fuzzy sets.
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 865–886
Abstract
Picture fuzzy sets (PFSs) utilize the positive, neutral, negative and refusal membership degrees to describe the behaviours of decision-makers in more detail. In this article, we expound the application of extended TODIM based on cumulative prospect theory under picture fuzzy multiple attribute group decision making (MAGDM). In addition, we adopt Information Entropy, which is used to ascertain the weighting vector of attributes to improve the availability of the TODIM method. At last, we exercise the improved TODIM into a numerical case for super market location and testify the effectiveness of this new method by comparing its results with other methods’ results.
Journal:Informatica
Volume 32, Issue 3 (2021), pp. 543–564
Abstract
As an extension of intuitionistic fuzzy sets, picture fuzzy sets can deal with vague, uncertain, incomplete and inconsistent information. The similarity measure is an important technique to distinguish two objects. In this study, a similarity measure between picture fuzzy sets based on relationship matrix is proposed. The new similarity measure satisfies the axiomatic definition of similarity measure. It can be testified from a numerical experiment that the new similarity measure is more effective. Finally, we apply the proposed similarity measure to multiple-attribute decision making.
Pub. online:2 Dec 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 4 (2020), pp. 707–722
Abstract
Spherical fuzzy sets theory is useful and advantageous for handling uncertainty and imprecision in multiple attribute decision-making problems by considering membership, non-membership, and indeterminacy degrees. In this paper, by extending the classical linear assignment method, we propose a novel method called the spherical fuzzy linear assignment method (SF-LAM) to solve multiple criteria group decision-making problems in the spherical fuzzy environment. A ranking procedure consisting of aggregation functions, score functions, accuracy functions, weighted rank frequency, and a binary mathematical model are presented to determine the criterion-wise preferences and various alternatives’ priority order. The proposed method’s applicability and validity are shown through the selection problem among wind power farm locations. The proposed method helps managers to find the best location to construct the wind power plant based on the determined criteria. Finally, a comparative analysis is performed between the proposed spherical fuzzy linear assignment (SF-LAM) model and the spherical fuzzy analytic hierarchy process (SF-AHP) and spherical fuzzy WASPAS methods.
Journal:Informatica
Volume 5, Issues 1-2 (1994), pp. 31–42
Abstract
A multiple criteria decision support system has been developed and implemented on the personal computer. Three interactive methods of increasing complexity are realized. The main applications of the system were in the scope of decisions on the best energy development strategy for Lithuania.