1 Introduction
1.1 Research Challenges/Gaps and Motivation
-
• Direct elicitation of probability alongwith membership grade is difficult from experts’ point of view.
-
• Due to unavoidable hesitation in the decision-making process, missing elements are possible. Extant decision models with PHFS do not consider missing elements, and methodical imputation of the same is ignored.
-
• Extant models with PHFS do not consider expert weight calculation, which causes human intervention and subjective bias in decision-making.
-
• Further, attitudes of experts are ignored during the weight calculation of criteria in state-of-the-art PHFS-based decision models. This is vital information in criteria weight estimation as the initial opinion of each criterion is obtained from the experts.
-
• Experts possess some interdependencies, which are not adequately captured during aggregation of preferences. Besides, the operators do not use experts’ weights that are calculated methodically.
-
• Finally, ranking of alternatives must consider the nature of criteria and produce results close to human driven decision-making or cognition.
-
• How to determine the confidence associated with more than one membership grade?
-
• How to address the issue of missing or unavailable preferences in the decision matrices?
-
• How to reduce subjectivity, bias, and human intervention in the weight assessment process?
-
• How to capture the interdependencies among experts during preference aggregation?
-
• How to rank alternatives by considering decision process close to human style decision-making?
1.2 Novel Contributions of the Research
-
• A mathematical model is proposed by using a distance measure to compute the occurrence probability of each factor.
-
• A case-based approach is proposed to impute the missing elements under PHFS context.
-
• Weights of factors and experts are decided rationally by proposing an attitude-based entropy measure and regret/rejoice factor, respectively. In general, the literature survey reveals that the attitudes of decision-makers are not taken during criteria weight estimation into consideration, and the weights of experts are directly obtained. For instance, the results of Kao (2010) and Koksalmis and Kabak (2019) indicate the need for a rational criteria significance determination method and a rational expert weight calculation method, respectively.
-
• Moreover, Maclaurin symmetric mean (MSM) is extended to PHFS for the aggregation of preferences with weights of experts acquired methodically from the regret/rejoice factor.
-
• Lastly, the EDAS technique is extended to PHFS context for rational alternatives’ ranking. EDAS takes into account the nature of factors and yields results close to human-like decisions with resemblance to human cognition.
2 Literature Review
Table 1
Source | Methodical DM weights | Hesitation of experts | Imputation of missing values | Interdependencies during data fusion | Probability calculation | Attitude of experts |
Wang and Li (2017) | No | No | No | No | No | No |
Zhou and Xu (2017a) | No | No | No | No | No | No |
Jiang and Ma (2018) | No | No | No | No | No | No |
Zhou and Xu (2017c) | No | No | No | No | Yes | No |
Tian et al. (2018) | No | No | No | No | No | No |
Bashir et al. (2018) | No | No | No | No | No | No |
Song et al. (2018) | No | No | No | No | No | No |
Zhang et al. (2018) | No | No | No | No | No | No |
Li and Wang (2018b) | No | No | Yes | No | No | No |
Wu et al. (2019) | No | No | No | No | No | No |
Li et al. (2019a) | No | Yes | No | No | No | No |
Su et al. (2019) | No | Yes | No | No | No | No |
Li et al. (2020a) | No | Yes | No | No | No | No |
Guo et al. (2020) | No | No | No | Yes | No | No |
Liang et al. (2020) | No | No | No | No | No | No |
Jin et al. (2020) | No | Yes | No | No | No | No |
Liu et al. (2020) | No | Yes | No | No | Yes | No |
Liao et al. (2022a) | No | Yes | No | No | No | No |
Liao et al. (2022b) | No | Yes | No | No | No | No |
Liu and Guo (2022) | No | No | No | No | No | No |
Chen et al. (2022) | No | No | No | No | No | No |
Wang et al. (2022) | No | Yes | No | No | No | No |
Divsalar et al. (2022) | No | Yes | No | Yes | No | No |
Fang (2023) | No | Yes | No | No | No | No |
Zhao et al. (2023) | No | Yes | No | Yes | No | No |
Jiang et al. (2024) | No | Yes | No | Yes | Yes | No |
3 New Decision Model under PHFS
3.1 Preliminaries
Definition 1 (Torra, 2010).
Definition 2 (Xu and Zhou, 2016).
(2)
\[ {H_{p}}=\big\{z,{h_{{H_{p}}}}({\gamma _{i}}|{p_{i}})\hspace{0.1667em}\big|\hspace{0.1667em}\mathrm{z}\in \mathrm{Z}\big\},\]Remark 1.
Definition 3 (Xu and Zhou, 2016).
(3)
\[\begin{aligned}{}& {h_{1}}\oplus {h_{2}}=\bigcup \limits_{a=1,2,\dots \mathrm{\# }{h_{1}},b=1,2,\dots ,\mathrm{\# }{h_{2}}}\{{\gamma _{a}}+{\gamma _{b}}-{\gamma _{a}}{\gamma _{b}}|{p_{a}}{p_{b}}\},\end{aligned}\](4)
\[\begin{aligned}{}& {h_{1}}\otimes {h_{2}}=\bigcup \limits_{a=1,2,\dots \mathrm{\# }{h_{1}},b=1,2,\dots ,\mathrm{\# }{h_{2}}}\{{\gamma _{a}}{\gamma _{b}}|{p_{a}}{p_{b}}\},\end{aligned}\](5)
\[\begin{aligned}{}& {h^{c}}=\bigcup \limits_{a=1,2,\dots \mathrm{\# }h}\big\{(1-{\gamma _{a}})\hspace{0.1667em}\big|\hspace{0.1667em}{p_{a}}\big\},\end{aligned}\]3.2 Imputing Missing Values
(8)
\[ {h_{ij}}=\Bigg({\prod \limits_{kk=1}^{{t^{av}}}}{\big({\gamma _{ij}^{l}}\big)^{d{w_{kk}}}}\hspace{0.1667em}\Big|\hspace{0.1667em}{\prod \limits_{kk=1}^{{t^{av}}}}{\big({p_{ij}^{l}}\big)^{d{w_{kk}}}}\Bigg),\](9)
\[ {h_{ij}}=\Bigg({\prod \limits_{ii=1}^{{m^{av}}}}{\big({\gamma _{ij}^{l}}\big)^{d{w_{ii}}}}\hspace{0.1667em}\Big|\hspace{0.1667em}{\prod \limits_{ii=1}^{{m^{av}}}}{\big({p_{ij}^{l}}\big)^{d{w_{ii}}}}\Bigg),\]3.3 Probability Calculation Method
3.4 Regret/Rejoice Factor for Experts’ Weights
(11)
\[ U{T_{l}}={\sum \limits_{i=1}^{m}}{\sum \limits_{j=1}^{n}}\big(vf(s{h_{ij}})+RT\big(vf(s{h_{ij}})\big)-v{f^{pos}}(s{h_{ij}})\big),\]3.5 Attitude-Based Entropy Measure
(14)
\[ E{Y_{j}}=\sum \limits_{l}\bigg(-\frac{1}{n}\bigg(\frac{{D_{lj}}}{{\textstyle\sum _{l}}{D_{lj}}}ln\bigg(\frac{{D_{lj}}}{{\textstyle\sum _{l}}{D_{lj}}}\bigg)\bigg)\bigg),\]3.6 Maclaurin Operator for Aggregating PHFEs
Definition 4.
(16)
\[\begin{aligned}{}& {\text{PH-WMSM}^{(v,{\lambda _{1}},{\lambda _{2}},\dots ,{\lambda _{v}})}}({h_{1}},{h_{2}},\dots ,{h_{t}})\\ {} & \hspace{1em}={\Bigg(\Bigg(1-\Bigg({\prod \limits_{l=1}^{t}}{\Bigg(1-{\prod \limits_{ll=1}^{v}}{\gamma _{ij}^{{\lambda _{ll}}}}\Bigg)^{d{w_{l}}}}\Bigg)\Bigg)\Bigg)^{\frac{1}{{\textstyle\sum _{ll}}{\lambda _{ll}}}}},\\ {} & \hspace{2em}{\Bigg(\Bigg(1-\Bigg({\prod \limits_{l=1}^{t}}{\Bigg(1-{\prod \limits_{ll=1}^{v}}{p_{ij}^{{\lambda _{ll}}}}\Bigg)^{d{w_{l}}}}\Bigg)\Bigg)\Bigg)^{\frac{1}{{\textstyle\sum _{ll}}{\lambda _{ll}}}}},\end{aligned}\]Proof.
Proof.
Proof.
Proof.
Proof.
3.7 Ranking Method with PHFEs
(17)
\[ h{w_{ij}}=\big(1-{\big(1-{\gamma _{ij}^{k}}\big)^{c{w_{j}}}}\hspace{0.1667em}\big|\hspace{0.1667em}1-{\big(1-{p_{ij}^{k}}\big)^{c{w_{j}}}}\big),\](18)
\[ \overline{h{w_{i}}}=\bigg(\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{\gamma _{ij}^{k(a)}}}{n}\hspace{0.1667em}\Big|\hspace{0.1667em}\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{p_{ij}^{k(a)}}}{n}\bigg),\](21)
\[ R{V_{i}}=\bigg(\frac{{\textit{PDA}_{i}}-{\min _{i}}({\textit{PDA}_{i}})}{{\max _{i}}({\textit{PDA}_{i}})-{\min _{i}}({\textit{PDA}_{i}})}\bigg)+\bigg(\frac{{\textit{NDA}_{i}}-{\min _{i}}({\textit{NDA}_{i}})}{{\max _{i}}({\textit{NDA}_{i}})-{\min _{i}}({\textit{NDA}_{i}})}\bigg),\]4 Case Study of Logistics Provider Assessment
Table 2
TLPs | Criteria for evaluating TLPs | ||||||
$c{t_{1}}$ | $c{t_{2}}$ | $c{t_{3}}$ | $c{t_{4}}$ | $c{t_{5}}$ | $c{t_{6}}$ | $c{t_{7}}$ | |
$e{t_{1}}$ | |||||||
$tl{p_{1}}$ | $\left(\begin{array}{l}0.4|{p_{11}^{1}}\\ {} 0.5|{p_{11}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{12}^{1}}\\ {} 0.4|{p_{12}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{13}^{1}}\\ {} 0.55|{p_{13}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{14}^{1}}\\ {} 0.4|{p_{14}^{2}}\end{array}\right)$ | $-xx-$ | $\left(\begin{array}{l}0.45|{p_{16}^{1}}\\ {} 0.35|{p_{16}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{17}^{1}}\\ {} 0.65|{p_{17}^{2}}\end{array}\right)$ |
$tl{p_{2}}$ | $\left(\begin{array}{l}0.4|{p_{21}^{1}}\\ {} 0.3|{p_{21}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{22}^{1}}\\ {} 0.5|{p_{22}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}065|{p_{23}^{1}}\\ {} 0.45|{p_{23}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{24}^{1}}\\ {} 0.55|{p_{24}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{25}^{1}}\\ {} 0.6|{p_{25}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{26}^{1}}\\ {} 0.4|{p_{26}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{17}^{1}}\\ {} 0.7|{p_{17}^{2}}\end{array}\right)$ |
$tl{p_{3}}$ | $\left(\begin{array}{l}0.55|{p_{31}^{1}}\\ {} 0.6|{p_{31}^{2}}\end{array}\right)$ | $-xx-$ | $\left(\begin{array}{l}0.5|{p_{33}^{1}}\\ {} 0.7|{p_{33}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{34}^{1}}\\ {} 0.65|{p_{34}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{35}^{1}}\\ {} 0.4|{p_{35}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{36}^{1}}\\ {} 0.35|{p_{36}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.75|{p_{17}^{1}}\\ {} 0.55|{p_{17}^{2}}\end{array}\right)$ |
$tl{p_{4}}$ | $\left(\begin{array}{l}0.6|{p_{41}^{1}}\\ {} 0.7|{p_{41}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{42}^{1}}\\ {} 0.36|{p_{42}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{43}^{1}}\\ {} 0.7|{p_{43}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{44}^{1}}\\ {} 0.45|{p_{44}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.4|{p_{45}^{1}}\\ {} 0.55|{p_{45}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.4|{p_{46}^{1}}\\ {} 0.45|{p_{46}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{17}^{1}}\\ {} 0.6|{p_{17}^{2}}\end{array}\right)$ |
$tl{p_{5}}$ | $\left(\begin{array}{l}0.45|{p_{51}^{1}}\\ {} 0.55|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{52}^{1}}\\ {} 0.65|{p_{52}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{53}^{1}}\\ {} 0.45|{p_{53}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.4|{p_{54}^{1}}\\ {} 0.5|{p_{54}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{55}^{1}}\\ {} 0.4|{p_{55}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{56}^{1}}\\ {} 0.5|{p_{56}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{17}^{1}}\\ {} 0.7|{p_{17}^{2}}\end{array}\right)$ |
$e{t_{2}}$ | |||||||
$tl{p_{1}}$ | $\left(\begin{array}{l}0.55|{p_{11}^{1}}\\ {} 0.6|{p_{11}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{12}^{1}}\\ {} 0.6|{p_{12}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{13}^{1}}\\ {} 0.5|{p_{13}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{14}^{1}}\\ {} 0.6|{p_{14}^{2}}\end{array}\right)$ | $-xx-$ | $\left(\begin{array}{l}0.55|{p_{51}^{1}}\\ {} 0.5|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{51}^{1}}\\ {} 0.7|{p_{51}^{2}}\end{array}\right)$ |
$tl{p_{2}}$ | $\left(\begin{array}{l}0.55|{p_{21}^{1}}\\ {} 0.45|{p_{21}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{22}^{1}}\\ {} 0.55|{p_{22}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{23}^{1}}\\ {} 0.45|{p_{23}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{24}^{1}}\\ {} 0.4|{p_{24}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{51}^{1}}\\ {} 0.6|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{51}^{1}}\\ {} 0.6|{p_{51}^{2}}\end{array}\right)$ | $-xx-$ |
$tl{p_{3}}$ | $\left(\begin{array}{l}0.5|{p_{31}^{1}}\\ {} 0.55|{p_{31}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{32}^{1}}\\ {} 0.55|{p_{32}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{33}^{1}}\\ {} 0.7|{p_{33}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{34}^{1}}\\ {} 0.5|{p_{34}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{51}^{1}}\\ {} 0.7|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{51}^{1}}\\ {} 0.6|{p_{51}^{2}}\end{array}\right)$ | $-xx-$ |
$tl{p_{4}}$ | $\left(\begin{array}{l}0.6|{p_{41}^{1}}\\ {} 0.7|{p_{41}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{42}^{1}}\\ {} 0.6|{p_{42}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{43}^{2}}\\ {} 0.35|{p_{43}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{44}^{1}}\\ {} 0.7|{p_{44}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{51}^{1}}\\ {} 0.65|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{51}^{1}}\\ {} 0.55|{p_{51}^{2}}\end{array}\right)$ | $-xx-$ |
$tl{p_{5}}$ | $\left(\begin{array}{l}0.7|{p_{51}^{1}}\\ {} 0.65|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{52}^{1}}\\ {} 0.4|{p_{52}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{53}^{1}}\\ {} 0.5|{p_{53}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{54}^{1}}\\ {} 0.65|{p_{54}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{51}^{1}}\\ {} 0.5|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{51}^{1}}\\ {} 0.6|{p_{51}^{2}}\end{array}\right)$ | $-xx-$ |
$e{t_{3}}$ | |||||||
$tl{p_{1}}$ | $\left(\begin{array}{l}0.6|{p_{11}^{1}}\\ {} 0.4|{p_{11}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{12}^{1}}\\ {} 0.65|{p_{12}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{13}^{1}}\\ {} 0.35|{p_{13}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{14}^{1}}\\ {} 0.55|{p_{14}^{2}}\end{array}\right)$ | $-xx-$ | $\left(\begin{array}{l}0.55|{p_{16}^{1}}\\ {} 0.6|{p_{16}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{17}^{1}}\\ {} 0.5|{p_{17}^{2}}\end{array}\right)$ |
$tl{p_{2}}$ | $\left(\begin{array}{l}0.55|{p_{21}^{1}}\\ {} 0.45|{p_{21}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{22}^{1}}\\ {} 0.65|{p_{22}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{23}^{1}}\\ {} 0.45|{p_{23}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{24}^{1}}\\ {} 0.6|{p_{24}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{25}^{1}}\\ {} 0.6|{p_{25}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{26}^{1}}\\ {} 0.55|{p_{26}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.35|{p_{27}^{1}}\\ {} 0.4|{p_{27}^{2}}\end{array}\right)$ |
$tl{p_{3}}$ | $\left(\begin{array}{l}0.7|{p_{31}^{1}}\\ {} 0.6|{p_{31}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{32}^{1}}\\ {} 0.6|{p_{32}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{33}^{1}}\\ {} 0.65|{p_{33}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{34}^{1}}\\ {} 0.5|{p_{34}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{35}^{1}}\\ {} 0.55|{p_{35}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{36}^{1}}\\ {} 0.7|{p_{36}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{37}^{1}}\\ {} 0.55|{p_{37}^{2}}\end{array}\right)$ |
$tl{p_{4}}$ | $\left(\begin{array}{l}0.7|{p_{41}^{1}}\\ {} 0.6|{p_{41}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.45|{p_{42}^{1}}\\ {} 0.4|{p_{42}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.7|{p_{43}^{1}}\\ {} 0.6|{p_{43}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.55|{p_{44}^{1}}\\ {} 0.45|{p_{44}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{45}^{1}}\\ {} 0.7|{p_{45}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{46}^{1}}\\ {} 0.5|{p_{46}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.65|{p_{47}^{1}}\\ {} 0.7|{p_{47}^{2}}\end{array}\right)$ |
$tl{p_{5}}$ | $\left(\begin{array}{l}0.55|{p_{51}^{1}}\\ {} 0.65|{p_{51}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.4|{p_{52}^{1}}\\ {} 0.5|{p_{52}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.75|{p_{53}^{1}}\\ {} 0.55|{p_{53}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{54}^{1}}\\ {} 0.55|{p_{54}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.75|{p_{55}^{1}}\\ {} 0.45|{p_{55}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.5|{p_{56}^{1}}\\ {} 0.7|{p_{56}^{2}}\end{array}\right)$ | $\left(\begin{array}{l}0.6|{p_{57}^{1}}\\ {} 0.7|{p_{57}^{2}}\end{array}\right)$ |
Table 3
TLPs | Criteria for evaluating TLPs | ||||||
$c{t_{1}}$ | $c{t_{2}}$ | $c{t_{3}}$ | $c{t_{4}}$ | $c{t_{5}}$ | $c{t_{6}}$ | $c{t_{7}}$ | |
$e{t_{1}}$ | $\left(\begin{array}{l}0.5|0.5\\ {} 0.4|0.3\end{array}\right)$ | $\left(\begin{array}{l}0.5|0.35\\ {} 0.65|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.45|0.35\\ {} 0.5|0.5\end{array}\right)$ | $\left(\begin{array}{l}0.5|0.45\\ {} 0.6|0.5\end{array}\right)$ | $\left(\begin{array}{l}0.6|0.5\\ {} 0.4|0.3\end{array}\right)$ | $\left(\begin{array}{l}0.55|0.45\\ {} 0.5|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.6|0.45\\ {} 0.7|0.5\end{array}\right)$ |
$e{t_{2}}$ | $\left(\begin{array}{l}0.6|0.4\\ {} 0.5|0.45\end{array}\right)$ | $\left(\begin{array}{l}0.45|0.4\\ {} 0.55|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.7|0.45\\ {} 0.6|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.7|0.5\\ {} 0.5|0.35\end{array}\right)$ | $\left(\begin{array}{l}0.55|0.4\\ {} 0.45|0.45\end{array}\right)$ | $\left(\begin{array}{l}0.5|0.5\\ {} 0.7|0.3\end{array}\right)$ | $\left(\begin{array}{l}0.65|0.4\\ {} 0.55|0.5\end{array}\right)$ |
$e{t_{3}}$ | $\left(\begin{array}{l}0.65|0.45\\ {} 0.7|0.35\end{array}\right)$ | $\left(\begin{array}{l}0.5|0.5\\ {} 0.65|0.35\end{array}\right)$ | $\left(\begin{array}{l}0.65|0.5\\ {} 0.45|0.35\end{array}\right)$ | $\left(\begin{array}{l}0.45|0.45\\ {} 0.5|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.65|0.35\\ {} 0.5|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.65|0.45\\ {} 0.6|0.4\end{array}\right)$ | $\left(\begin{array}{l}0.5|0.3\\ {} 0.7|0.55\end{array}\right)$ |
Table 4
TLPs | Criteria for evaluating TLPs | ||||||
${ct_{1}}$ | ${ct_{2}}$ | ${ct_{3}}$ | ${ct_{4}}$ | ${ct_{5}}$ | ${ct_{6}}$ | ${ct_{7}}$ | |
${UT_{1}}$ | |||||||
${tlp_{1}}$ | −0.0454 | 0.2972 | −0.2213 | 0.2356 | 0.1421 | 0.5377 | 0.3963 |
${tlp_{2}}$ | −0.0101 | 0.1307 | 0.2371 | 0.0560 | 0.0057 | 0.4610 | 0.6230 |
${tlp_{3}}$ | 0.3087 | 0.0630 | 0.0183 | 0.2287 | 0.2958 | 0.3879 | 0.6380 |
${tlp_{4}}$ | 0.0738 | 0.2938 | 0.3276 | 0.3127 | −0.0384 | 0.4656 | 0.2122 |
${tlp_{5}}$ | −0.0868 | 0.2195 | 0.1337 | −0.2284 | −0.2170 | 0.1782 | 0.4458 |
${UT_{2}}$ | |||||||
${tlp_{1}}$ | 0.0124 | −0.0461 | 0.2601 | −0.1139 | 0.1730 | 0.6146 | 0.1787 |
${tlp_{2}}$ | 0.0382 | 0.1117 | −0.0778 | 0.2709 | 0.2999 | 0.5601 | 0.3872 |
${tlp_{3}}$ | −0.0453 | −0.0427 | 0.3328 | −0.2416 | −0.1495 | 0.5015 | 0.6712 |
${tlp_{4}}$ | −0.0174 | 0.3233 | −0.2460 | 0.3343 | −0.0476 | 0.1916 | 0.5088 |
${tlp_{5}}$ | 0.3395 | −0.1824 | 0.1860 | 0.2882 | 0.3155 | 0.4651 | 0.1787 |
${UT_{3}}$ | |||||||
${tlp_{1}}$ | −0.0373 | 0.3178 | −0.2795 | 0.2611 | 0.1836 | 0.6504 | 0.1590 |
${tlp_{2}}$ | 0.0431 | 0.1057 | −0.109 | 0.3369 | 0.3389 | 0.5281 | 0.5013 |
${tlp_{3}}$ | 0.2882 | 0.2934 | 0.3409 | 0.1833 | 0.2274 | 0.6428 | 0.6537 |
${tlp_{4}}$ | 0.3379 | −0.2912 | 0.3207 | −0.2273 | −0.0859 | 0.1863 | 0.6109 |
${tlp_{5}}$ | 0.0827 | −0.1331 | 0.2599 | −0.1109 | 0.3308 | 0.6517 | 0.2436 |
Table 5
TLPs | Criteria for evaluating TLPs | |||
$c{t_{1}}$ | $c{t_{2}}$ | $c{t_{3}}$ | $c{t_{4}}$ | |
$e{t_{123}}$ | ||||
$tl{p_{1}}$ | $\left(\begin{array}{l}0.548|0.2826\\ {} 0.5245|0.3\end{array}\right)$ | $\left(\begin{array}{l}0.5374|0.6137\\ {} 0.5935|0.35\end{array}\right)$ | $\left(\begin{array}{l}0.5807|0.6659\\ {} 0.4942|0.1\end{array}\right)$ | $\left(\begin{array}{l}0.5807|0.6659\\ {} 0.4942|0.1\end{array}\right)$ |
$tl{p_{2}}$ | $\left(\begin{array}{l}0.5208|0.3\\ {} 0.4240|0.45\end{array}\right)$ | $\left(\begin{array}{l}0.6397|0.4\\ {} 0.5890|0.2\end{array}\right)$ | $\left(\begin{array}{l}0.5832|0.4160\\ {} 0.45|0.45\end{array}\right)$ | $\left(\begin{array}{l}0.5807|0.6659\\ {} 0.4942|0.1\end{array}\right)$ |
$tl{p_{3}}$ | $\left(\begin{array}{l}0.6231|0.4713\\ {} 0.5872|0.45\end{array}\right)$ | $\left(\begin{array}{l}0.5108|0.7390\\ {} 0.5784|0.15\end{array}\right)$ | $\left(\begin{array}{l}0.6454|0.8589\\ {} 0.6838|0.1\end{array}\right)$ | $\left(\begin{array}{l}0.5807|0.6659\\ {} 0.4942|0.1\end{array}\right)$ |
$tl{p_{4}}$ | $\left(\begin{array}{l}0.6473|0.6888\\ {} 0.6719|0.2\end{array}\right)$ | $\left(\begin{array}{l}0.5726|0.7474\\ {} 0.5042|0.15\end{array}\right)$ | $\left(\begin{array}{l}0.6300|0.6616\\ {} 0.6218|0.3\end{array}\right)$ | $\left(\begin{array}{l}0.5807|0.6659\\ {} 0.4942|0.1\end{array}\right)$ |
$tl{p_{5}}$ | $\left(\begin{array}{l}0.6058|0.6383\\ {} 0.6256|0.24\end{array}\right)$ | $\left(\begin{array}{l}0.5284|0.5859\\ {} 0.5646|0.3\end{array}\right)$ | $\left(\begin{array}{l}0.6886|0.65\\ {} 0.5105|0.2\end{array}\right)$ | $\left(\begin{array}{l}0.5807|0.6659\\ {} 0.4942|0.1\end{array}\right)$ |
$c{t_{5}}$ | $c{t_{6}}$ | $c{t_{7}}$ | ||
$e{t_{123}}$ | ||||
$tl{p_{1}}$ | $\left(\begin{array}{l}0.5781|0.7\\ {} 0.5624|0.1\end{array}\right)$ | $\left(\begin{array}{l}0.5266|0.75\\ {} 0.5323|0.25\end{array}\right)$ | $\left(\begin{array}{l}0.5067|0.4160\\ {} 0.6372|0.15\end{array}\right)$ | |
$tl{p_{2}}$ | $\left(\begin{array}{l}0.6225|0.8049\\ {} 0.6|0.15\end{array}\right)$ | $\left(\begin{array}{l}0.5847|0.6780\\ {} 0.5434|0.2\end{array}\right)$ | $\left(\begin{array}{l}0.5250|0.5660\\ {} 0.6526|0.35\end{array}\right)$ | |
$tl{p_{3}}$ | $\left(\begin{array}{l}0.6035|0.6616\\ {} 0.6030|0.18\end{array}\right)$ | $\left(\begin{array}{l}0.5691|0.6280\\ {} 0.6247|0.27\end{array}\right)$ | $\left(\begin{array}{l}0.6419|0.5214\\ {} 0.6178|0.45\end{array}\right)$ | |
$tl{p_{4}}$ | $\left(\begin{array}{l}0.4613|0.25\\ {} 0.6509|0.2\end{array}\right)$ | $\left(\begin{array}{l}0.5658|0.5427\\ {} 0.5064|0.22\end{array}\right)$ | $\left(\begin{array}{l}0.6219|0.35\\ {} 0.6753|0.2993\end{array}\right)$ | |
$tl{p_{5}}$ | $\left(\begin{array}{l}0.6669|0.7053\\ {} 0.4571|0.25\end{array}\right)$ | $\left(\begin{array}{l}0.6095|0.5800\\ {} 0.6320|0.32\end{array}\right)$ | $\left(\begin{array}{l}0.5610|0.6392\\ {} 0.7|0.15\end{array}\right)$ |
Table 6
TLPs | EDAS parameter values | ||
${\textit{PDA}_{i}}$ | ${\textit{NDA}_{i}}$ | $R{V_{i}}$ | |
$tl{p_{1}}$ | 0.5274 | 1 | 1.5274 |
$tl{p_{2}}$ | 0.3364 | 0.8938 | 1.2303 |
$tl{p_{3}}$ | 0 | 0 | 0 |
$tl{p_{4}}$ | 1 | 0.3100 | 1.3100 |
$tl{p_{5}}$ | 0.0696 | 0.8748 | 0.9444 |
Fig. 2
5 Comparative Study with Extant Approaches under PHFS
Table 7
Features | PHFS-based decision models | ||||||
Proposed | Jiang and Ma (2018) | Farhadinia et al. (2020) | Li and Wang (2018a) | Zhou and Xu (2017c) | Divsalar et al. (2022) | Wang et al. (2022) | |
Data | PHFEs | PHFEs | PHFEs | PHFEs | PHFEs | PHFEs | PHFEs |
Occurrence probability | Calculated – methodically | Not calculated | Not calculated | Not calculated | Not calculated | Not calculated | Not calculated |
Missing values | Considered in the study | Not considered in the study | |||||
Imputation | Done methodically | N/A | N/A | N/A | N/A | N/A | N/A |
Attitude of of experts | Considered | Not considered | Not considered | Not considered | Not considered | Not considered | Not considered |
Experts’ weights | Calculated methodically – fully unknown information | Not calculated | N/A | Calculated methodically – partial information is needed | Not calculated | Not calculated | Not calculated |
Experts’ hesitation | Captured by the model | Not captured by these models | Not captured | Captured | |||
Interdependency among experts | Captured during preference aggregation | Not captured by these models | Captured | Not captured | |||
Nature of criteria | Considered during ranking | Not considered by these models |
-
• The occurrence probability regarding each HFE is calculated systematically by proposing a mathematical model, which is lacking in the existing models.
-
• Preference matrices with missing values are taken into consideration in the introduced framework, and unlike the state-of-the-art models, these are imputed rationally by proposing a case-based approach.
-
• Driven by the arguments of Kao (2010) and Koksalmis and Kabak (2019), weights of criteria and experts are determined systematically. During criteria weight calculations, the attitudes of experts are considered along with the hesitation of experts. Further, experts’ weights are calculated by considering the regret/rejoice factor.
-
• Unlike existing models, the preferences are aggregated by capturing the interdependencies among decision-makers and also through methodical weights of experts.
-
• Methods proposed for the weight calculation are useful when the weight information is fully unknown. Further, existing models do not consider the attitudes of experts during criteria weight calculations.
-
• Finally, alternatives are ranked by properly considering the nature of criteria. Also, the positive and negative distances from the average are considered in the formulation to mimic real-time human ranking processes.