Pub. online:12 Jan 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 23–40
Abstract
Anti-cancer immunotherapy dramatically changes the clinical management of many types of tumours towards less harmful and more personalized treatment plans than conventional chemotherapy or radiation. Precise analysis of the spatial distribution of immune cells in the tumourous tissue is necessary to select patients that would best respond to the treatment. Here, we introduce a deep learning-based workflow for cell nuclei segmentation and subsequent immune cell identification in routine diagnostic images. We applied our workflow on a set of hematoxylin and eosin (H&E) stained breast cancer and colorectal cancer tissue images to detect tumour-infiltrating lymphocytes. Firstly, to segment all nuclei in the tissue, we applied the multiple-image input layer architecture (Micro-Net, Dice coefficient (DC) $0.79\pm 0.02$). We supplemented the Micro-Net with an introduced texture block to increase segmentation accuracy (DC = $0.80\pm 0.02$). We preserved the shallow architecture of the segmentation network with only 280 K trainable parameters (e.g. U-net with ∼1900 K parameters, DC = $0.78\pm 0.03$). Subsequently, we added an active contour layer to the ground truth images to further increase the performance (DC = $0.81\pm 0.02$). Secondly, to discriminate lymphocytes from the set of all segmented nuclei, we explored multilayer perceptron and achieved a 0.70 classification f-score. Remarkably, the binary classification of segmented nuclei was significantly improved (f-score = 0.80) by colour normalization. To inspect model generalization, we have evaluated trained models on a public dataset that was not put to use during training. We conclude that the proposed workflow achieved promising results and, with little effort, can be employed in multi-class nuclei segmentation and identification tasks.
Pub. online:17 Jun 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 3 (2020), pp. 561–578
Abstract
This paper presents a non-iterative deep learning approach to compressive sensing (CS) image reconstruction using a convolutional autoencoder and a residual learning network. An efficient measurement design is proposed in order to enable training of the compressive sensing models on normalized and mean-centred measurements, along with a practical network initialization method based on principal component analysis (PCA). Finally, perceptual residual learning is proposed in order to obtain semantically informative image reconstructions along with high pixel-wise reconstruction accuracy at low measurement rates.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 3 (2018), pp. 421–438
Abstract
We attempted to determine the most common localizations of epileptogenic foci by using common functional (EEG and PET/CT) and structural (MRI) imaging methods. Also, we compared the number of epileptogenic foci detected with all diagnostic methods and determined the success rate of surgery in the operated patients when the epileptogenic foci coincided on all three imaging methods. 35 patients (including children) with clinically proven refractory epilepsy were included into the study. All patients underwent an MRI scan with epilepsy protocol, Fluorodeoxyglucose-18-PET/CT scan, and an EEG prior to a PET study. 14 patients underwent neurosurgery for removal of epileptogenic foci. We found a statistically significant difference between the number of epileptogenic foci which were found in PET/CT and EEG studies but there was no significant difference between MRI and PET/CT lesion numbers. The most common localization of epileptogenic activity on EEG was right temporal lobe (54.3%); the most common lobe with structural changes on MRI was right temporal lobe (42.9%); the most common hypometabolism zone on PET/CT was in right temporal lobe (45.7%). 10 out of 14 patients who underwent surgery demonstrated excellent postsurgical outcomes, with no epileptic seizures one year or more after the operation; 3/14 patients had 1–2 seizures after surgery and one patient had the same count or more epileptic seizures in duration of one year or more. The measure of Agreement Kappa between PET/CT and EEG value was 0.613 $(p<0.05)$. Between PET/CT and MRI the value was 0.035 $(p>0.05)$. Surgical treatment may offer hope for patients with intractable epileptic seizures. PET/CT was an extremely useful imaging method to assist in the localization of epileptogenic zones. The dynamic functional information that brain PET/CT provides is complementary to anatomical imaging of MRI and functional information of EEG.
Journal:Informatica
Volume 2, Issue 3 (1991), pp. 367–377
Abstract
Identification problems of linear dynamic systems in the class of parametric mathematical models are considered. A method of calculating of guaranteed estimates of indefinite parameters is proposed. The method is based on the specific semiinfinite extremal problems solution.
Journal:Informatica
Volume 2, Issue 2 (1991), pp. 195–220
Abstract
The observation problem along with the certain independent value plays a great role while carrying out control of dynamic systems in the conditions of uncertainty (Kalman, 1957, Krasovski, 1985, Leondes, 1976). A new approach on connection between the problems of control and observation is presented in (Gabasov, 1991). Developing it, we justify the solution of observation problem in the given paper that arises, at optimization of linear dynamic systems. The paper consists of the two parts. In the part I the linear discrete system is investigated. In the part II the linear dynamic continuous system is considered.