Journal:Informatica
Volume 35, Issue 2 (2024), pp. 227–253
Abstract
Like other disciplines, machine learning is currently facing a reproducibility crisis that hinders the advancement of scientific research. Researchers face difficulties reproducing key results due to the lack of critical details, including the disconnection between publications and associated models, data, parameter settings, and experimental results. To promote transparency and trust in research, solutions that improve the accessibility of models and data, facilitate experiment tracking, and allow audit of experimental results are needed. Blockchain technology, characterized by its decentralization, data immutability, cryptographic hash functions, consensus algorithms, robust security measures, access control mechanisms, and innovative smart contracts, offers a compelling pathway for the development of such solutions. To address the reproducibility challenges in machine learning, we present a novel concept of a blockchain-based platform that operates on a peer-to-peer network. This network comprises organizations and researchers actively engaged in machine learning research, seamlessly integrating various machine learning research and development frameworks. To validate the viability of our proposed concept, we implemented a blockchain network using the Hyperledger Fabric infrastructure and conducted experimental simulations in several scenarios to thoroughly evaluate its effectiveness. By fostering transparency and facilitating collaboration, our proposed platform has the potential to significantly improve reproducible research in machine learning and can be adapted to other domains within artificial intelligence.
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 255–282
Abstract
The Multi-Objective Mixed-Integer Programming (MOMIP) problem is one of the most challenging. To derive its Pareto optimal solutions one can use the well-known Chebyshev scalarization and Mixed-Integer Programming (MIP) solvers. However, for a large-scale instance of the MOMIP problem, its scalarization may not be solved to optimality, even by state-of-the-art optimization packages, within the time limit imposed on optimization. If a MIP solver cannot derive the optimal solution within the assumed time limit, it provides the optimality gap, which gauges the quality of the approximate solution. However, for the MOMIP case, no information is provided on the lower and upper bounds of the components of the Pareto optimal outcome. For the MOMIP problem with two and three objective functions, an algorithm is proposed to provide the so-called interval representation of the Pareto optimal outcome designated by the weighting vector when there is a time limit on solving the Chebyshev scalarization. Such interval representations can be used to navigate on the Pareto front. The results of several numerical experiments on selected large-scale instances of the multi-objective multidimensional 0–1 knapsack problem illustrate the proposed approach. The limitations and possible enhancements of the proposed method are also discussed.
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 283–309
Abstract
In recent years, Magnetic Resonance Imaging (MRI) has emerged as a prevalent medical imaging technique, offering comprehensive anatomical and functional information. However, the MRI data acquisition process presents several challenges, including time-consuming procedures, prone motion artifacts, and hardware constraints. To address these limitations, this study proposes a novel method that leverages the power of generative adversarial networks (GANs) to generate multi-domain MRI images from a single input MRI image. Within this framework, two primary generator architectures, namely ResUnet and StarGANs generators, were incorporated. Furthermore, the networks were trained on multiple datasets, thereby augmenting the available data, and enabling the generation of images with diverse contrasts obtained from different datasets, given an input image from another dataset. Experimental evaluations conducted on the IXI and BraTS2020 datasets substantiate the efficacy of the proposed method compared to an existing method, as assessed through metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Normalized Mean Absolute Error (NMAE). The synthesized images resulting from this method hold substantial potential as invaluable resources for medical professionals engaged in research, education, and clinical applications. Future research gears towards expanding experiments to larger datasets and encompassing the proposed approach to 3D images, enhancing medical diagnostics within practical applications.
Pub. online:29 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 311–339
Abstract
The extensions of ordinary fuzzy sets are problematic because they require decimal numbers for membership, non-membership and indecision degrees of an element from the experts, which cannot be easily determined. This will be more difficult when three or more digits’ membership degrees have to be assigned. Instead, proportional relations between the degrees of parameters of a fuzzy set extension will make it easier to determine the membership, non-membership, and indecision degrees. The objective of this paper is to present a simple but effective technique for determining these degrees with several decimal digits and to enable the expert to assign more stable values when asked at different time points. Some proportion-based models for the fuzzy sets extensions, intuitionistic fuzzy sets, Pythagorean fuzzy sets, picture fuzzy sets, and spherical fuzzy sets are proposed, including their arithmetic operations and aggregation operators. Proportional fuzzy sets require only the proportional relations between the parameters of the extensions of fuzzy sets. Their contribution is that these models will ease the use of fuzzy set extensions with the data better representing expert judgments. The imprecise definition of proportions is also incorporated into the given models. The application and comparative analyses result in that proportional fuzzy sets are easily applied to any problem and produce valid outcomes. Furthermore, proportional fuzzy sets clearly showed the role of the degree of indecision in the ranking of alternatives in binomial and trinomial fuzzy sets. In the considered car selection problem, it has been observed that there are minor changes in the ordering of intuitionistic and spherical fuzzy sets.
Pub. online:23 Feb 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 341–361
Abstract
A fast vectorized codes for assembly mixed finite element matrices for the generalized Navier–Stokes system in three space dimensions in the MATLAB language are proposed by the MINI element. Vectorization means that the loop over tetrahedra is avoided. Numerical experiments illustrate computational efficiency of the codes. An experimental superconvergence rate for the pressure component is established.
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 363–378
Abstract
The significance of earth observation data spans diverse fields and domains, driving the need for efficient management. Nevertheless, the exponential increase in data volume brings new challenges that complicate processing and storing data. This article proposes an optimized multi-modular service for earth observation data management in response to these challenges. The suggested approach focuses on choosing the optimal configurations for the storage and processing layers to improve the performance and cost-effectiveness of managing data. By employing the recommended optimized strategies, earth observation data can be managed more effectively, resulting in fast data processing and reduced costs.
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 379–400
Abstract
Multi-agent approach is very popular for modelling and simulation of complex phenomena, design and programming of decentralised computing systems. Asynchronous beings, which do not share state but communicate using messages are a convenient abstraction for representing various phenomena observed in the real world. When the number of the considered agents grows, the designers and developers of such systems must address the problem of performance. Introducing distribution is often a weapon of choice, which, however, does not guarantee obtaining proper scalability and efficiency. The intensity of communication in a large-scale agent-based system can easily exceed the abilities of a distributed hardware architecture, leading to poor performance. After analysing various distributed agent-based systems, we identified several reasons for limited performance and several architectural solutions, which can help overcoming this problem. The main aim of the presented work is identification and systematization of these architectural solutions in the form of design patterns. As a result, we propose three new design patterns for building scalable distributed agent-based systems. A systematic description of their aims, structure, variants and features is provided, together with examples of applications.
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 401–420
Abstract
This article offers a comprehensive overview of the results obtained through numerical methods in solving the minimal surface equation, along with exploring the applications of minimal surfaces in science, technology, and architecture. The content is enriched with practical examples highlighting the diverse applications of minimal surfaces.
Pub. online:15 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 421–452
Abstract
The interval-valued intuitionistic fuzzy sets (IVIFSs), based on the intuitionistic fuzzy sets (IFSs), combine the classical decision method and its research and application is attracting attention. After a comparative analysis, it becomes clear that multiple classical methods with IVIFSs’ information have been applied to many practical issues. In this paper, we extended the classical EDAS method based on the Cumulative Prospect Theory (CPT) considering the decision experts (DEs)’ psychological factors under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, an original EDAS method, based on the CPT under IVIFSs (IVIF-CPT-EDAS) method, is created for multiple-attribute group decision making (MAGDM) issues. Meanwhile, the information entropy method is used to evaluate the attribute weight. Finally, a numerical example for Green Technology Venture Capital (GTVC) project selection is given, some comparisons are used to illustrate the advantages of the IVIF-CPT-EDAS method and a sensitivity analysis is applied to prove the effectiveness and stability of this new method.