Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 35, Issue 2 (2024)
  4. MINI Element for the Navier–Stokes Syste ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

MINI Element for the Navier–Stokes System in 3D: Vectorized Codes and Superconvergence
Volume 35, Issue 2 (2024), pp. 341–361
Radek Kučera ORCID icon link to view author Radek Kučera details   Vladimír Arzt   Jonas Koko  

Authors

 
Placeholder
https://doi.org/10.15388/24-INFOR543
Pub. online: 23 February 2024      Type: Research Article      Open accessOpen Access

Received
1 May 2023
Accepted
1 February 2024
Published
23 February 2024

Abstract

A fast vectorized codes for assembly mixed finite element matrices for the generalized Navier–Stokes system in three space dimensions in the MATLAB language are proposed by the MINI element. Vectorization means that the loop over tetrahedra is avoided. Numerical experiments illustrate computational efficiency of the codes. An experimental superconvergence rate for the pressure component is established.

References

 
Arnold, D.N., Brezzi, F., Fortin, M. (1984). A stable finite element for the Stokes equations. Calcolo, 21, 337–344.
 
Arzt, V. (2019). Finite Element Meshes and Assembling of Stiffness Matrices. Master’s thesis, VŠB-TU Ostrava, Czech Republic (in Czech). https://dspace.vsb.cz/bitstream/handle/10084/137486/ARZ0009_USP_B3968_3901R076_2019.pdf?sequence=1&isAllowed=y [online].
 
Boffi, D., Brezzi, F., Fortin, M. (2013). Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics. Springer Verlag, Heidelberg, New York, Dordrecht, London.
 
Brezzi, F., Fortin, M. (1991). Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics. Springer Verlag, Berlin.
 
Cioncolini, A., Boffi, D. (2019). The MINI mixed finite element for the Stokes problem: an experimental investigation. Computers and Mathematics with Applications, 77(9), 2432–2446.
 
Cioncolini, A., Boffi, D. (2022). Superconvergence of the MINI mixed finite element discretization of the Stokes problem: an experimental study in 3D. Finite Elements in Analysis and Design, 201, 103706.
 
Eichel, H., Tobiska, L., Xie, H. (2011). Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes problem. Mathematics of Computations, 80, 697–722.
 
Elman, H.C., Silvester, D.J., Wathen, A.J. (2014). Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford.
 
Fang, Q. (2018). Iso2mesh: a 3D surface and volumetric mesh generator for MATLAB/Octave. http://iso2mesh.sourceforge.net [online].
 
Girault, V., Raviart, P.A. (1986). Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics. Springer Verlag, Berlin.
 
Girault, V., Wheeler, M.F. (2008). Discontinuous Galerkin methods. In: Glowinski, R., Neittaanmäki, P. (Eds.), Partial Differential Equations. Computational Methods in Applied Sciences, Vol. 16. Springer, Dordrecht, pp. 2–26.
 
Griebel, M., Neunhoeffer, T., Regler, H. (1998). Algebraic multigrid methods for the solution of the Navier–Stokes equations in complicated geometries. International Journal for Numerical Methods in Fluids, 26(3), 281–301.
 
Haslinger, J., Kučera, R., Sassi, T., Šátek, V. (2021). Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D. Mathematics and Computers in Simulation, 189, 191–206.
 
Henriksen, M.O., Holmen, J. (2002). Algebraic splitting for incompressible Navier–Stokes equations. Journal of Computational Physics, 175(2), 438–453.
 
Hoanga, L.T., Martinez, V.R. (2018). Asymptotic expansion for solutions of the Navier–Stokes equations with non-potential body forces. Journal of Mathematical Analysis and Applications, 462, 84–113.
 
IT4Innovations (2023). https://www.it4i.cz/en/infrastructure/karolina [online].
 
Koko, J. (2016). Fast MATLAB assembly of FEM matrices in 2D and 3D using cell array approach. International Journal of Modeling, Simulation, and Scientific Computing, 7(2), 1650010.
 
Koko, J. (2019). Efficient MATLAB codes for the 2D/3D Stokes equation with the mini-element. Informatica, 30(2), 243–268.
 
Kučera, R., Arzt, V., Koko, J. (2023). Free available vectorized codes. https://homel.vsb.cz/~kuc14/programs/ReferenceAssembling.zip [online].
 
Loghin, D., Wathen, A.J. (2002). Schur complement preconditioners for the Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 40(3–4), 403–412.
 
Panasenko, G.P. (1998). Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-mecanique Physique Astronomie, 326(12), 867–872.
 
Pernice, M., Tocci, M.D. (2001). A multigrid-preconditioned Newton–Krylov method for the incompressible Navier–Stokes equations. SIAM Journal on Scientific Computing, 23, 398–418.
 
Rahman, T., Valdman, J. (2015). Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements. Applied Mathematics and Computation, 267, 252–263.
 
Rønquist, E.M. (1996). A domain decomposition solver for the steady Navier-Stokes equations. In: Ilin, A., Scott, R. (Eds.), Proceedings of the 3rd International Conference on Spectral and High-Order Methods. HJM, Houston, pp. 469–485.
 
Viguerie, A., Veneziani, A. (2018). Algebraic splitting methods for the steady incompressible Navier–Stokes equations at moderate Reynolds numbers. Computer Methods in Applied Mechanics and Engineering, 330, 271–291.

Biographies

Kučera Radek
https://orcid.org/0000-0002-8237-5177
radek.kucera@vsb.cz

R. Kučera is a full professor at Department of Mathematics and Descriptive Geometry at the VSB–Technical University of Ostrava, Czech Republic. His research interests include numerical linear algebra and numerical optimization with applications to contact problems for linear elastic bodies and flow problems with stick-slip boundary conditions.

Arzt Vladimír
vladimir.arzt@vsb.cz

V. Arzt is a PhD student at Department of Applied Mathematics at the VSB–Technical University of Ostrava, Czech Republic. His research interests include numerical optimization with applications to solving PDEs with the stick-slip boundary conditions and shape optimization problems.

Koko Jonas
jonas.koko@uca.fr

J. Koko is an associate professor of applied mathematics in School of Computer Science at Université Clermont Auvergne, France. His research interests include scientific/parallel computing, numerical optimization and applications to nonlinear mechanics.


Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
Navier–Stokes system mixed finite element method MINI element convergence rate MATLAB

Metrics
since January 2020
365

Article info
views

150

Full article
views

193

PDF
downloads

45

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy