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Abstract. A fast vectorized codes for assembly mixed finite element matrices for the generalized
Navier–Stokes system in three space dimensions in the MATLAB language are proposed by the
MINI element. Vectorization means that the loop over tetrahedra is avoided. Numerical experi-
ments illustrate computational efficiency of the codes. An experimental superconvergence rate for
the pressure component is established.
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1. Introduction

Numerical solution algorithms for the Navier Stokes equations is the rapidly developing
field, in which various cost-effective methods are being proposed. This can be domain
decomposition methods (Rønquist, 1996; Girault and Wheeler, 2008), methods based on
splitting (Henriksen and Holmen, 2002; Viguerie and Veneziani, 2018), asymptotic ex-
pansions (Panasenko, 1998; Hoanga and Martinez, 2018), multigrid methods (Griebel et
al., 1998; Pernice and Tocci, 2001) etc. In this paper we use a simple Schur complement
algorithm. A survey of the Schur complement methods can be found in Loghin and Wa-
then (2002).

The paper focuses on the generalized Navier–Stokes system in three space dimen-
sions (3D) approximated by the mixed finite element method using the MINI element
called also the P1-bubble/P1 pair (Arnold et al., 1984). The main contribution of the pa-
per consists in the development of the vectorized codes for fast assembly finite element
matrices in the MATLAB language so that the loop over tetrahedra is avoided. These codes
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are very fast and enable to perform experiments with relatively large scale problems. Vec-
torized codes were proposed for different differential operators, e.g. see Rahman and Vald-
man (2015) and references therein. Our research is inspired by Koko (2019), where the
vectorized codes for the generalized Stokes problem are proposed. However, an extension
to the Navier–Stokes problem is not trivial. Formally, it consists of adding the nonlinear
convective term in the momentum equation. This nonlinearity is typically treated itera-
tively using the Oseen or the Newton type linearization (Elman et al., 2014). In the first
case, the Oseen convection matrix depends on the nodal velocity field from the previ-
ous iteration that is presented in computations. The situation for the Newton convective
matrix is more involved, since it depends, in addition, on the partial derivatives of the
velocity field that are not immediately presented. We approximate them from appropriate
directional derivatives so that computed approximations are invariant with respect to local
renumbering of nodes and can by easily vectorized. Another ingredient in the assembling
process is the bubble component elimination that is performed by the Schur complement
reduction on the element level. This elimination requires inverting blocks of the local ma-
trices that is done by the vectorized Cramer rule. The elimination itself uses a vectorized
variant of linear combinations of vectors and of sums of vector outer products. Note that
the vectorized codes for the Navier–Stokes problem play an important role in the whole
solution process, since the finite element matrices for the linearized subproblems are re-
peatedly assembled in each iterative step that have to be fast.

Numerical experiments with our codes show superconvergence rate of the finite ele-
ment approximation of the pressure component that is close to O(h3/2) or higher. Similar
results were observed for the pure Stokes problem by Cioncolini and Boffi (2022).

The rest of the paper is organized as follows. Section 2 presents the classical and weak
formulation of the problem and introduces the basic iterative schemes. In Section 3, we
describe mixed finite element approximation based on the MINI element, for which we
derive local linear systems that are split on the bubble and non-bubble components. We
present also an idea how to approximate partial derivatives from the discrete vector field
of the previous iteration. In Section 4, we discuss element matrices in more details so that
their final forms may be coded by vectorized operations. Section 5 introduces ideas of
the vectorization and refers to our free available codes. In Section 6, we describe the dual
implementation of the iterative scheme that we use in computations. Section 7 is devoted
to numerical experiments. First, we demonstrate low time requirements of the vectorized
codes and than we compute the convercence rates. Finally, we conclude with some remarks
and comments in Section 8.

To better understand our presentation we use different font styles. The mathematics
bold symbols are used for the vector functions or their vector arguments, e.g. u, p. The
“text up” symbols are used for matrices, vectors and scalars on the level of finite elements,
e.g. Akk , Bl , p. The “bold up” symbols are used for global matrices and vectors, e.g. A,
BU , p. Finally, the typewriter style is used for codes, e.g. for p = 1:4.
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2. Formulation

Let � ⊂ R
3 be a bounded domain with a sufficiently smooth boundary � = ∂�. We

consider the steady Navier–Stokes system with the homogeneous Dirichlet boundary con-
dition:

−ν�u + u · ∇u + αu + ∇p = f in �,

∇ · u = 0 in �,

u = uD on �,

⎫⎪⎪⎬
⎪⎪⎭ (1)

where ν > 0 is the kinematic viscosity, α > 0 is a constant from a time discretization of
the unsteady problem, and f : � → R

3 represents the external forces. We are searching
for the vector velocity field u : � → R

3 and the scalar pressure field p : � → R. The
existence and uniqueness of a weak solution to (1) are discussed in Girault and Raviart
(1986).

We will consider two iterative methods for solving (1) with different linearizations of
the convection term u · ∇u. Let w be an approximation of u and δw be an increment such
that u = w+δw. The Oseen type linearization is based on the omission of the linear term
with δw:

u · ∇u = (w + δw) · ∇u = w · ∇u + δw · ∇u ≈ w · ∇u.

In the Newton type linearization we omit the quadratic term with δw:

u · ∇u = w · ∇u + δw · ∇(w + δw) = w · ∇u + (u − w) · ∇w + δw · ∇δw

≈ w · ∇u + u · ∇w − w · ∇w.

We arrive at the following linearizations of (1):

−ν�u + w · ∇u + ρu · ∇w + αu + ∇p = f + ρw · ∇w in �,

∇ · u = 0 in �,

u = 0 on �,

⎫⎪⎪⎬
⎪⎪⎭ (2)

where w : � → R
3 is given. For ρ = 0/1, we get the Oseen/Newton linearization of (1).

The weak formulation of (2) requires the following spaces:

V = (
H 1

0 (�)
)3

, Q =
{
q ∈ L2(�) :

∫
�

q dx = 0

}
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and the forms:

a(u, v) = ν

3∑
i=1

∫
�

∇ui · ∇vi dx, c(w; u, v) =
∫

�

(w · ∇u) · v dx,

m(u, v) = α

∫
�

u · v dx, b(v, q) = −
∫

�

q(∇ · v) dx,

aρ(w; u, v) = a(u, v) + c(w; u, v) + ρc(u; w, v) + m(u, v),

lρ(w; v) =
∫

�

f · v dx + ρc(w; w, v),

where u, v,w ∈ (H 1(�))3, q ∈ L2(�), and u = (u1, u2, u3), v = (v1, v2, v3).
The weak formulations of (2) read as follows:

Find (u, p) ∈ V × Q such that for all (v, q) ∈ V × Q,

aρ(w; u, v) + b(v, p) = lρ(w; v),

b(u, q) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3)

The problem (1) can be solved by the following iterative scheme:

Given
(
u(0), p(0)

) ∈ V × Q.

For κ � 1, find (u(κ), p(κ)) ∈ V × Q solving (3) with w = u(κ−1).

}
(4)

This scheme will be called the Oseen/Newton iteration for ρ = 0/1, respectively.
A comprehensive discussion of convergence results can be found in Elman et al. (2014),
pp. 344–346. The Oseen iteration are also caled the Picard iteration.

3. Mixed Finite Element Approximation with the MINI Element

We approximate (3) by the mixed finite element method. It requires to choose a finite
element pair satisfying the inf-sup condition (Brezzi and Fortin, 1991). Here, we use the
P1-bubble/P1 pair called also the MINI element proposed by Arnold et al. (1984).

We suppose that � is a polyhedral domain. Let Th be a regular partition of � given by
tetrahedra Tj ∈ Th, 1 � j � nt , Let xi ∈ �, 1 � i � np, be finite element nodes. Each
tetrahedron T = Tj has 4 vertices xi1, xi2, xi3, xi4 ∈ T . Each vertex of T is associated
with the local linear basis function φj = φj (x) such that φj (xik ) = δjk , 1 � j, k � 4. The
bubble function is defined on T by the product: φb = φb(x) = 44φ1(x)φ2(x)φ3(x)φ4(x),
x ∈ T . We denote also φ5 = φb. Integrals over T can be evaluated by the formula:

∫
T

φ
α1
1 (x)φ

α2
2 (x)φ

α3
3 (x)φ

α4
4 (x) dx = 6|T | α1!α2!α3!α4!

(α1 + α2 + α3 + α4)! ,

where |T | is the tetrahedron volume.
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On Th we introduce the space of the bubble functions and the piecewise linear func-
tions:

Bh = {
vh ∈ C(�̄) : vh|T = cT φb, cT ∈ R ∀T ∈ Th

}
,

Wh = {
vh ∈ C(�̄) : vh|T ∈ P 1(T ) ∀T ∈ Th

}
,

respectively, where P 1(T ) is the space of all polynomials on T of the degree at least one.
We approximate V and Q as follows:

V h = {
vh ∈ (Wh ⊕ Bh)

3 : vh(xi ) = 0 ∀xi ∈ �
}
,

Qh =
{
qh ∈ Wh :

∫
�

qh dx = 0

}
,

respectively. The finite element approximation of (3) reads as follows:

Find (uh, ph) ∈ V h × Qh such that for all (vh, ph) ∈ V 0h × Qh,

aρ(wh; uh, vh) + b(vh, ph) = lρ(wh; vh),

b(uh, qh) = 0,

⎫⎪⎪⎬
⎪⎪⎭ (5)

where wh ∈ V h is an approximation of w from (3).
On T ∈ Th the components of uh = (uh1, uh2, uh3) are the linear combinations of the

basis functions:

uhk(x) =
4∑

j=1

ukjφj (x) + ukbφb(x), 1 � k � 3, and ph(x) =
4∑

j=1

pjφj (x).

The linear systems arising from (5) over one element T read as:

⎛
⎜⎜⎜⎜⎝

Ā11 Ā12 Ā13 B̄

1

Ā21 Ā22 Ā23 B̄

2

Ā31 Ā32 Ā33 B̄

3

B̄1 B̄2 B̄3 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ū1

ū2

ū3

p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f̄1

f̄2

f̄3

0

⎞
⎟⎟⎠ , (6)

where ūk = (uk1, uk2, uk3, uk4, ukb)

, 1 � k � 3, and p = (p1, p2, p3, p4)


. The matri-
ces Ākl ∈ R

5×5 are algebraic counterparts of the form aρ :

Ākk = R̄ + C̄ + ρN̄kk + M̄, Ākl = ρN̄kl for k �= l,

where R̄ is the diffusion matrix, C̄ is the Oseen convection matrix, N̄kl are the Newton
convection matrices, 1 � k, l � 3, and, M̄ is the mass matrix. Further, B̄k ∈ R

4×5 are
the components of the divergence matrix representing the form b and the right-hand sides
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f̄k ∈ R
5, 1 � k � 3, correspond to the form lρ . The entries are given as follows:

(R̄)ij = ν

∫
T

∇φj (x) · ∇φi(x) dx, (C̄)ij =
3∑

k=1

∫
T

whk(x)∂kφj (x)φi(x) dx,

(N̄kl)ij =
∫

T

∂lwhk(x)φj (x)φi(x) dx, (M̄)ij = α

∫
T

φj (x)φi(x) dx, (7)

(f̄k)i =
∫

T

fk(x)φi(x) dx + ρ

3∑
l=1

∫
T

whl(x)∂lwhk(x)φi(x) dx

for 1 � i, j � 5, where whk are the components of wh, and

(B̄k)ij = −
∫

T

∂kφj (x)φi(x) dx (8)

for 1 � i � 4 and 1 � j � 5.
Recall that wh represents the velocity field from the previous iteration of discretized

analogy of (4). In the discrete case we know only nodal values of wh at the vertices xi

of T , 1 � i � 4. In (C̄)ij , (N̄kl)ij , and (f̄k)i we will use constant approximations of whk

and ∂lwhk on T . The approximation of whk is defined by the arithmetic mean:

wk = 1

4
(wk1 + wk2 + wk3 + wk4), 1 � k � 3,

where wki = whk(xi ), 1 � i � 4. The approximation of ∂lwhk denoted by δlwk will
be taken by their value at x1: δlwk = ∂lwhk(x1). The relations between the gradient
∇whk(x1) = (δ1wk, δ2wk, δ3wk) and the derivatives in the directions xi+1 − x1 lead to
three linear systems of the form:

∇whk(x1) · (xi+1 − x1) = whk(xi+1) − whk(x1), 1 � i � 3, (9)

from which δlwk , 1 � k, l � 3, can be computed. Note that the solutions are invariant
with respect to (local) renumbering of the vertices xi of T . Using the same symbols for
the respective approximations of (C̄)ij , (N̄kl)ij , and (f̄k)i , we get:

(C̄)ij =
3∑

k=1

wk

∫
T

∂kφj (x)φi(x) dx, (N̄kl)ij = δlwk

∫
T

φj (x)φi(x) dx, (10)

(f̄k)i =
∫

T

fk(x)φi(x) dx + ρ

3∑
l=1

wlδlwk

∫
T

φi(x) dx. (11)

Hence, C̄ is the linear combination of B̄k and N̄kl are multiples of M̄ so that the Ossen and
Newton matrices may be assembled from the matrices of the Stokes problem.
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The element matrices and vectors will be divided on the non-bubble and bubble com-
ponents:

R̄ =
(

R r
r
 ωR

)
, C̄ =

(
C cU

c

L ωC

)
, N̄kl =

(
Nkl nkl

n

kl ωNkl

)
,

M̄ =
(

M(α) m(α)

m(α)
 ωM(α)

)
, B̄k = (Bk, Bkb), f̄k =

(
fk

fkb

)
, ūk =

(
uk

ukb

)
,

where R, M(α), Bk, C, Nkl ∈ R
4×4, r, m(α), Bkb, cU , cL, nkl, fk, uk ∈ R

4, and ωR ,
ωM(α), ωC, ωNkl

, fkb, ukb ∈ R for 1 � k, l � 3.

4. Element Matrices

The tetrahedron T ∈ Th is represented by four vertices xi = (xi, yi, zi), 1 � i � 4. We
denote the entries of xi − xj by x[ij ] = xi − xj , y[ij ] = yi − yj , z[ij ] = zi − zj and
wk[ij ] = wki − wkj , i �= j .

4.1. Derivatives of the Basis Functions

The constant values of the basis functions derivatives on T are given by the following
formulas (see Arzt, 2019):

⎛
⎜⎜⎝

∂1φ1

∂1φ2

∂1φ3

∂1φ4

⎞
⎟⎟⎠ = 1

det(X)
x,

⎛
⎜⎜⎝

∂2φ1

∂2φ2

∂2φ3

∂2φ4

⎞
⎟⎟⎠ = 1

det(X)
y,

⎛
⎜⎜⎝

∂3φ1

∂3φ2

∂3φ3

∂3φ4

⎞
⎟⎟⎠ = 1

det(X)
z,

where

x =

⎛
⎜⎜⎝

y[42]z[32] − y[32]z[42]
y[31]z[41] − y[41]z[31]
y[41]z[21] − y[21]z[41]
y[21]z[31] − y[31]z[21]

⎞
⎟⎟⎠ , y =

⎛
⎜⎜⎝

x[32]z[42] − x[42]z[32]
x[41]z[31] − x[31]z[41]
x[21]z[41] − x[41]z[21]
x[31]z[21] − x[21]z[31]

⎞
⎟⎟⎠ ,

z =

⎛
⎜⎜⎝

x[42]y[32] − x[32]y[42]
x[31]y[41] − x[41]y[31]
x[41]y[21] − x[21]y[41]
x[21]y[31] − x[31]y[21]

⎞
⎟⎟⎠ , X =

⎛
⎝ x[21] x[31] x[41]

y[21] y[31] y[41]
z[21] z[31] z[41]

⎞
⎠ .

The volume |T | of the tetrahedron T can be computed by:

|T | = 1

6

∣∣det(X)
∣∣ = 1

6
|x[21]x2 + x[31]x3 + x[41]x4|.
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4.2. Approximation of the Velocity Derivatives

The linear systems (9) read as follows:
⎛
⎝ x[21] y[21] z[21]

x[31] y[31] z[31]
x[41] y[41] z[41]

⎞
⎠

⎛
⎝ δ1wk

δ2wk

δ3wk

⎞
⎠ =

⎛
⎝ wk[21]

wk[31]
wk[41]

⎞
⎠ for 1 � k � 3.

Using Cramer’s rule, we get:

δ1wk = (wk[21]x2 + wk[31]x3 + wk[41]x4)/det(X),

δ2wk = (wk[21]y2 + wk[31]y3 + wk[41]y4)/det(X),

δ3wk = (wk[21]z2 + wk[31]z3 + wk[41]z4)/det(X)

for 1 � k � 3.

4.3. Stokes Matrices

The following formulas are adopted from Koko (2019). For the diffusion matrix we get:

R = ν

36|T |
(
xx
 + yy
 + zz
)

,

ωR = 2048ν

8505|T |
(
x2

1 + y2
1 + z2

1 − x2(x3 + x4) − x3x4 − y2(y3 + y4) − y3y4−
− z2(z3 + z4) − z3z4

)
,

and r = 0. For the mass matrix we get:

M(α) = α|T |
20

⎛
⎜⎜⎝

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎞
⎟⎟⎠ , m(α) = 8α|T |

105

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

ωM(α) = 8192α|T |
51975

.

For the divergence matrix we get:

B1 = − S

24

⎛
⎜⎜⎝

x

x

x

x


⎞
⎟⎟⎠ , B2 = − S

24

⎛
⎜⎜⎝

y

y

y

y


⎞
⎟⎟⎠ , B3 = − S

24

⎛
⎜⎜⎝

z

z

z

z


⎞
⎟⎟⎠ ,

B1b = 16S

315
x, B2b = 16S

315
y, B3b = 16S

315
z,

where S = sgn(det(X)). The signum-function is due to |det(X)|/det(X).
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4.4. Oseen and Newton Convection Matrices

Using Green’s formula and φb = φ5 = 0 on ∂T , we obtain:

(C̄)i,5 =
3∑

k=1

wk

∫
T

∂kφb(x)φi(x) dx = −
3∑

k=1

wk

∫
T

∂kφi(x)φb(x) dx = −(C̄)5,i

for 1 � i � 4. It implies cL = −cU . Further:

ωC = (C̄)5,5 =
3∑

k=1

wk

∫
T

∂kφb(x)φb(x) dx =
3∑

k=1

wk

4∑
i=1

∂kφi(x)Ii = 0,

since
∑4

i=0 ∂kφi(x) = 0 on T and Ii = 44
∫
T

∏
j �=i φj (x)φb(x) dx does not depend

on i. Comparing the first equality in (10) with (8), we can write C = − ∑3
k=1 wkBk and

cU = − ∑3
k=1 wkBkb. For the Oseen convection matrix we get:

C = S

24

⎛
⎜⎜⎝w1

⎛
⎜⎜⎝

x

x

x

x


⎞
⎟⎟⎠ + w2

⎛
⎜⎜⎝

y

y

y

y


⎞
⎟⎟⎠ + w3

⎛
⎜⎜⎝

z

z

z

z


⎞
⎟⎟⎠

⎞
⎟⎟⎠ ,

cU = −16S

315
(w1x + w2y + w2z),

cL = −cU , and ωC = 0.
Comparing N̄ in (10) with M̄ in (7), we get for the Newton convection matrices:

Nkl = M(δlwk), nkl = m(δlwk), ωNkl
= ωM(δlwk) for 1 � k, l � 3.

4.5. Right-Hand Side Vectors

The functions fk are approximated on T by the mean values. Denoting:

f̃k = 1

4

4∑
i=1

fk(xi ) + ρ

3∑
l=1

wlδlwk,

we get from (11):

fk = |T |
4

f̃k

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ , fkb = 32 |T |

105
f̃k for 1 � k � 3.
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4.6. Bubble Components Elimination

Let us permute the system (6) as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 ZU,11 ZU,12 ZU,13 B

1

A21 A22 A23 ZU,21 ZU,22 ZU,23 B

2

A31 A32 A33 ZU,31 ZU,32 ZU,33 B

3

Z

L,11 Z


L,21 Z

L,31 ω11 ω12 ω13 B


1b

Z

L,12 Z


L,22 Z

L,32 ω21 ω22 ω23 B


2b

Z

L,13 Z


L,23 Z

L,33 ω31 ω32 ω33 B


3b

B1 B2 B3 B1b B2b B3b 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u1b

u2b

u3b

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

f3

f1b

f2b

f3b

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(12)

where Akk = R + C + ρNkk + M(α), ZU,kk = cU + ρnkk + m(α), ZL,kk = −cU +
ρnkk + m(α), ωkk = ωR + ρωNkk

+ ωM(α), and Akl = ρNkl , ZU,kl = ZL,kl = ρnkl ,
ωkl = ρωNkl

, k �= l, for 1 � k, l � 3. For the Oseen linearization (ρ = 0), the blocks
(1, 1), (1, 2), (2, 1), (2, 2) (denoted by lines) of the matrix in (12) are block diagonal. For
this simpler case the bubble component elimination is described in Koko (2019). Let us
consider the Newton linearization (ρ �= 0). The middle block equations in (12) gives:⎛

⎝ u1b

u2b

u3b

⎞
⎠ = W−1

⎛
⎜⎝

⎛
⎝ f1b

f2b

f3b

⎞
⎠ −

⎛
⎜⎝

Z

L,11 Z


L,21 Z

L,31

Z

L,12 Z


L,22 Z

L,32

Z

L,13 Z


L,23 Z

L,33

⎞
⎟⎠

⎛
⎝ u1

u2

u3

⎞
⎠ −

⎛
⎜⎝

B

1b

B

2b

B

3b

⎞
⎟⎠ p

⎞
⎟⎠ ,

(13)

where W = (ωij ) ∈ R
3×3. The inverse W−1 = (ω̂ij ) is given by Cramer’s rule:

det(W) = ω11ω22ω33 + ω12ω23ω31 + ω13ω21ω32 − ω13ω22ω31−
− ω12ω21ω33 − ω11ω23ω32,

ω̂11 = (ω22ω33 − ω23ω32)/det(W), ω̂12 = (ω13ω32 − ω12ω33)/det(W),

ω̂13 = (ω12ω23 − ω13ω22)/det(W),

ω̂21 = (ω23ω31 − ω21ω33)/det(W), ω̂22 = (ω11ω33 − ω13ω31)/det(W),

ω̂23 = (ω13ω21 − ω11ω23)/det(W),

ω̂31 = (ω21ω32 − ω22ω31)/det(W), ω̂32 = (ω12ω31 − ω11ω32)/det(W),

ω̂33 = (ω11ω22 − ω12ω21)/det(W).

Applying (13) in the first and the last block equations of (12) we arrive at:⎛
⎜⎜⎜⎜⎜⎝

Â11 Â12 Â13 B̂


U,1

Â21 Â22 Â23 B̂


U,2

Â31 Â32 Â33 B̂


U,3

B̂L,1 B̂L,2 B̂L,3 −Ê

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f̂1

f̂2

f̂3

ĝ

⎞
⎟⎟⎟⎠ , (14)
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where

Âkl = Akl −
3∑

j=1

ẐU,kj Z

L,lj , f̂k = fk −

3∑
j=1

ẐU,k1fkb,

B̂U,k = Bk −
3∑

j=1

BjbẐ


U,kj , B̂L,k = Bk −

3∑
j=1

B̂jbZ

L,kj ,

Ê =
3∑

j=1

B̂bj B

bj , ĝ = −

3∑
j=1

B̂bj fbj ,

ẐU,kl =
3∑

j=1

ZU,kj ω̂j l, B̂kb =
3∑

j=1

Bjbω̂jk

for 1 � k, l � 3. These formulas can be easily vectorized, since they are given by linear
combinations of vectors or by outer products of vectors.

5. Vectorized Coding

The local matrices and vectors Âkl , B̂U,k , B̂L,k , Ê, f̂k , ĝ on Tj ∈ Th, 1 � j � nt , derived
in (14), are associated with the global ones Akl , BU,k , BL,k , E, fk , g, 1 � k, l � 3,
respectively, through the ordered index-set J = [j1, j2, j3, j4] determined by the vertices
xj1 , xj2, xj3, xj4 of Tj . For instance:

(Akl)JJ := (Akl)JJ + Âkl, (fk)J := (fk)J + f̂k,

and analogously for other matrices and vectors. An usual assembly procedure uses three
loops: the outer loop over all Tj and two (one in case of vectors) inner loops over indices
of J . In vectorized coding we interchange positions of the loops so that the short loops
over J are the outer ones while the inner loop over all Tj is replaced by appropriate
vectorized operations. To demonstrate this process, we show in an abstract setting how to
vectorize outer products of vectors appearing in Âkl , B̂U,k , B̂L,k , and Ê.

We assume that for Tj ∈ Th, 1 � j � nt , the indices of J are stored in the j -th row
of the array t of the size nt × 4 so that:

J = t(j, 1 : 4).

Let vj , wj ∈ R
4 be column vectors that define the local contribution to the (abstract)

global matrix A corresponding to Tj so that:

AJJ := AJJ + vj w

j .
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We assume also that vj , wj are stored in the j -th rows of the arrays v, w of the size nt × 4
so that:

v

j = v(j, 1 : 4), w


j = w(j, 1 : 4),
respectively. Using three loops we updateA (the MATLAB representation of A) as follows:

for i = j:nt
for p = 1:4

for q = 1:4
A(t(j,p),t(j,q)) = A(t(j,p),t(j,q))+v(j,p)*w(j,q).

The same effect can be achieved by the following vectorized code:
for p = 1:4

for q = 1:4
A(t(:,p),t(:,q)) = A(t(:,p),t(:,q))+v(:,p).*w(:,q).

Here, the dot-product “.*” and the addition “+” are the vectorized MATLAB opera-
tions that are performed on the low level and, therefore, are fast. For more details, we refer
to Koko (2019) and to our free available codes (Kučera et al., 2023).

6. Algebraic Iterative Scheme

The algebraic version of the iterative scheme (4) reads as follows:

Given (u(0), p(0)) ∈ R
3np × R

np .

For κ � 1, solve(
A(u(κ−1)) B


U(u(κ−1))

BL(u(κ−1)) −E(u(κ−1))

) (
u(κ)

p(κ)

)
=

(
f(u(κ−1))

g(u(κ−1))

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15)

where A = A(u(κ−1)), BU = BU(u(κ−1)), BL = BL(u(κ−1)), and f = f(u(κ−1)) are
composed from the blocks Akl , BU,k , BL,k , and fk , 1 � k, l � d , respectively. Dependency
of all blocks on the velocity field from the previous iteration u(κ−1) is due to the bubble
component elimination (on the element level). Other artefacts of this elimination are the
presence of the blocks E = E(u(κ−1)), g = g(u(κ−1)) and the fact that BU �= BL. The
linear system in (15) is naturally adapted by the homogeneous Dirichlet boundary data
of (1)3. We initialize (15) by u(0) = 0, p(0) = 0.

Our implementation of (15) is based on an inexact dual strategy. In each step of (15)
we solve iteratively the Schur complement linear systems:

Sp(κ) = d, (16)

where S = BLA−1B

U + E, d = BLA−1f − g. The precision of p(κ) computed from (16)

is driven adaptively with respect to the precision achieved in the outer iterations of (15).
One iteration in (15) requires the following points:
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• Assembling A, BU , BL, E, f , and g by a vectorized code.
• Computing LU-factorization of A with the complete pivoting that results in the lower,

upper triangular matrices L, U, respectively, and in two permutation matrices P, Q such
that PAQ = LU.

• Assembling d = BL(Q(U−1(L−1(Pf)))) − g and activating the procedure for matrix-
vector products Sq based on Sq = BL(Q(U−1(L−1(P(B


U q))))) + Eq.
• Solving (16) using the BiCGSTAB method (Elman et al., 2014) which applies the

matrix-vector procedure from the previous point. The BiCGSTAB iterations start from
the initial approximation p(κ−1) and end if the adaptive inner terminating tolerance is
achieved:

tol (κ)
BiCGSTAB = {

rtol × err (κ−1), cfact × tol (κ−1)
BiCGSTAB

}
,

where 0 < rtol < 1, 0 < cfact < 1, and err (κ−1) is the outer terminating criterion
(err (0) = 1 and tol (0)

BiCGSTAB = rtol/cfact). The mass matrix is the preconditioner in the
BiCGSTAB method (Elman et al., 2014).

• Computing u(κ) = Q(U−1(L−1(P(f − B

U p(κ))))).

• Stop if the outer terminating criterion is sufficiently small:

err (κ) := ‖(u(κ), p(κ)) − (u(κ−1), p(κ−1))‖
‖(u(κ), p(κ))‖ + 1

� ε,

otherwise perform the next outer iteration with κ := κ + 1.

7. Numerical Experiments

We consider three test problems defined on the unit cube with known analytic solutions.
They are 3D extensions of the well-known test problems of computational fluid dynamics
in 2D. First, we examine time requirements of the assembly operations for different dis-
cretizations. Then we investigate convergence properties of the finite element approxima-
tion. All computations are done in MATLAB R2021a on supercomputer Karolina (IT4In-
novations, 2023). Meshes are generated by free available iso2mesh generator (Fang, 2018).
The structured partition Th of � = [0, 1]3 is defined so that � is first divided onto n3

cubes of the same size and, then, each of them is divided onto five tetrahedra. In this case
we have the mesh norm h = √

3/n. The mesh norms for unstructured partitions are com-
puted as maxima over all tetrahedra. See Fig. 1 for examples of structured and unstructured
meshes. Recall that np is the number of the finite element nodes and nt is the number of
the tetrahedra. The iterative scheme (15) uses the following parameters: ε = 10−5 and
rtol = cfact = 0.9.
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Fig. 1. Structured (left) and unstructured (right) mesh for test problems.

7.1. Test Problem #1

We consider the functions u = (u1, u2, u3) and p in � = [0, 1]3 as follows:

u1(x, y, z) = 4
(
1 − cos(2πx)

)
sin(2πy)z(1 − z),

u2(x, y, z) = 4 sin(2πx)
(
cos(2πy) − 1

)
z(1 − z),

u3(x, y, z) = 0,

p(x, y, z) = 2π
(− cos(2πx) + 2 cos(2πy) − cos(2πz)

)
.

These functions solve the problem (1) with f := −ν�u+u·∇u+αu+∇p. The problem
corresponds to a flow formed by a vortex rotating around the central axis of the cube so
that the velocity field is parallel to the xy plane with the maximal magnitude in the central
plan z = 0.5.

7.2. Test Problem #2

We consider the functions u = (u1, u2, u3) and p in � = [0, 1]3 as follows:

u1(x, y, z) = (
1 − cos(2πx)

)
sin(2πy) sin(2πz),

u2(x, y, z) = 2 sin(2πx)
(
cos(2πy) − 1

)
sin(2πz),

u3(x, y, z) = sin(2πx) sin(2πy)
(
1 − cos(2πz)

)
,

p(x, y, z) = 2π
(− cos(2πx) + 2 cos(2πy) − cos(2πz)

)
.

These functions solve the problem (1) with f defined as in the problem #1. The flow is
a vortex of a fusiform character around the central axis of the cube, i.e. rising and falling
spirals above the xy plane.
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7.3. Test Problem #3

We consider the functions u = (u1, u2, u3) and p in � = [0, 1]3 as follows:

u1(x, y, z) = x2(1 − x)22y(1 − y)(1 − 2y)2z(1 − z)(1 − 2z),

u2(x, y, z) = 2y2(1 − y)22x(1 − x)(2x − 1)2z(1 − z)(1 − 2z),

u3(x, y, z) = z2(1 − z)22y(1 − y)(1 − 2y)2x(1 − x)(1 − 2x),

p(x, y, z) = x(1 − x)y(1 − y)(1 − z).

These functions solve the problem (1) with f defined as in the problem #1. The flow
character is a vortex of the form as in the problem #2 but now described by the polynomial
functions instead of the trigonometric ones.

7.4. Example 1: Time Demands

In Tables 1–2 we denote by A_time(V), A_time(L) the CPU time for assembly operations
when the vectorized code or the loop over tetrahedra is used, respectively. S_time is the
CPU time for solving the respective linear system.

In Table 1 we report assembly time of the vectorized operations and the loop over
tetrahedra on meshes of the cube � = [0, 1]3 computed by:

ratio_1 = A_time(L)/A_time(V).

One can see that the loop over tetrahedra is extremely unefficient for large scale problems.
These tests are computed for the Oseen linearization with ν = 0.5 and α = 1.

Table 1
Loop over tetrahedra versus vectorized code.

np 729 2197 4913 9261 15625 29791 50653 91125
nt 2560 8640 20480 40000 69120 135000 233280 425920

A_time(V) 8.1e−03 2.8e−02 5.9e−02 1.3e−01 2.4e−01 6.4e−01 1.2e+00 2.1e+00
A_time(L) 2.4e−01 1.9e+00 2.0e+01 1.4e+02 4.7e+02 1.9e+03 6.0e+03 2.0e+04
ratio_1 29.6 66.8 333.6 1079.6 1952.3 3020.9 5079.3 9299.0

Table 2
Loop over tetrahedra: ν = 0.5.

Oseen linearization Newton linearization

np 4913 15625 4913 15625
nt 20480 69120 20480 69120

A_time(L) 2.17e+01 3.22e+02 2.56e+01 5.05e+02
S_time 1.57e−01 1.26e+00 4.28e−01 3.41e+00
ratio_2(L) 0.993 0.996 0.984 0.993
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Table 3
Vectorized code: ν = 0.5; 0.05.

Oseen linearization Newton linearization

np 103823 166375 250047 103823 166375 250047
nt 486680 787320 1191640 486680 787320 1191640
A_time(V) 7.60e+00 1.52e+01 2.50e+01 6.77e+00 1.46e+01 2.18e+01
S_time 3.45e+01 7.53e+01 1.58e+02 9.21e+01 2.30e+02 5.13e+02
ratio_2(V) 0.180 0.168 0.137 0.069 0.060 0.041
A_time(V) 7.66e+00 1.50e+01 2.19e+01 7.19e+00 1.52e+01 2.28e+01
S_time 5.47e+01 1.12e+02 2.04e+02 1.21e+02 2.74e+02 6.78e+02
ratio_2(V) 0.123 0.118 0.097 0.056 0.052 0.032

Tables 2–3 are obtained by solving the problem #1. We report the ratio of the assembly
operations per iteration of the scheme (15) computed by:

ratio_2(X) = A_time(X)
/(

A_time(X) + S_time
)
, X = L,V.

Table 2 is computed by the loop over tetrahedra. It shows that about 99% computational
time per iteration takes assembling of matrices. Similar behaviour was observed by Koko
(2016) for linear elasticity problems.

Table 3 is computed by the vectorized codes. It is seen that the relative efficiency of
the vectorized assembly operations is higher for large scale problems. Comparing S_time
we see that the first order Oseen linearization is faster than the second order Newton lin-
earization. A heuristic explanation of this fact consists in more complicated structure of
the Newton matrices.

7.5. Example 2: Convergence Rate on Structured Meshes

In this example, we investigate experimentally convergence rates of finite element approx-
imations computed by our vectorized codes on structured meshes. The following optimal
convergence result is proved in Boffi et al. (2013) for the Stokes problem and the MINI
element:

‖u − uh‖H 1 + ‖p − ph‖L2 � Ch
(‖u‖H 2 + ‖p‖H 1

)
, (17)

where C > 0 does not dependent on h. Cioncolini and Boffi (2019) and again Cioncolini
and Boffi (2022) studied experimentally convergence rates of the Stokes problem in 2D
and 3D, respectively. Note that the bound (17) is valid also for the Navier–Stokes prob-
lem as it follows from Girault and Raviart (1986) but under more complicated assumptions
(pp. 101, Theorem 4.1). The formula (17) indicates that ‖u−uh‖H 1 as well as ‖p−ph‖L2

converge linearly. In Tables 4–9, we compute convergence rates for the test problems #1–
#3 with ν = 0.5, 0.05 and α = 0. From the obtained results we can conclude that the
experimental convergence rates are close to the following ones: ‖u − uh‖L2 = O(h2),
‖p − ph‖L2 = O(h3/2), and ‖u − uh‖H 1 = O(h) and, in some cases, they are higher.
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Table 4
Convergence rates for the test problem #1 with ν = 0.5, structured mesh.

h‖n ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

7.873e−2‖22 1.749e−2 2.846e−1 3.507e−1
5.774e−2‖30 9.410e−3 2.00 1.785e−1 1.50 2.469e−1 1.13
4.558e−2‖38 5.856e−3 2.01 1.254e−1 1.50 1.909e−1 1.09
3.608e−2‖46 3.990e−3 2.01 9.422e−2 1.44 1.559e−1 1.06
3.093e−2‖54 2.891e−3 2.01 7.414e−2 1.50 1.318e−1 1.05
2.794e−2‖62 2.190e−3 2.01 6.030e−2 1.50 1.142e−1 1.04

Table 5
Convergence rates for the test problem #1 with ν = 0.05, structured mesh.

h‖n ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

7.873e−2‖22 1.583e−2 6.059e−2 3.515e−1
5.774e−2‖30 8.452e−3 2.02 3.379e−2 1.88 2.467e−1 1.14
4.558e−2‖38 5.239e−3 2.02 2.180e−2 1.85 1.907e−1 1.09
3.608e−2‖46 3.560e−3 2.02 1.538e−2 1.83 1.557e−1 1.06
3.093e−2‖54 2.575e−3 2.02 1.151e−2 1.81 1.316e−1 1.05
2.794e−2‖62 1.949e−3 2.02 8.996e−3 1.79 1.141e−1 1.04

Table 6
Convergence rates for the test problem #2 with ν = 0.5, structured mesh.

h‖n ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

7.873e−2‖22 3.998e−2 7.449e−1 8.546e−1
5.774e−2‖30 2.184e−2 1.95 4.726e−1 1.47 5.974e−1 1.15
4.558e−2‖38 1.370e−2 1.97 3.336e−1 1.47 4.604e−1 1.10
3.608e−2‖46 9.383e−3 1.98 2.514e−1 1.48 3.751e−1 1.07
3.093e−2‖54 6.822e−3 1.99 1.981e−1 1.49 3.168e−1 1.05
2.794e−2‖62 5.182e−3 1.99 1.613e−1 1.49 2.743e−1 1.04

Table 7
Convergence rates for the test problem #2 with ν = 0.05, structured mesh.

h‖n ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

7.873e−2‖22 3.505e−2 1.826e−1 8.442e−1
5.774e−2‖30 1.898e−2 1.98 1.024e−1 1.87 5.927e−1 1.14
4.558e−2‖38 1.187e−2 1.99 6.576e−2 1.87 4.580e−1 1.09
3.608e−2‖46 8.117e−3 1.99 4.556e−2 1.92 3.738e−1 1.06
3.093e−2‖54 5.898e−3 1.99 3.435e−2 1.76 3.160e−1 1.05
2.794e−2‖62 4.481e−3 1.99 2.668e−2 1.83 2.738e−1 1.04

Especially, the convergence rate of the pressure component shows the superconvergence
property. This result was theoretically proved for the pure Stokes problem in 2D by Eichel
et al. (2011). It was experimentally confirmed in above mentioned papers of Cioncolini
and Boffi but, again, for the Stokes problem. Our observation for the Navier–Stokes prob-
lem is new.
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Table 8
Convergence rates for the test problem #3 with ν = 0.5, structured mesh.

h‖n ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

7.873e−2‖22 3.648e−5 1.386e−3 1.114e−3
5.774e−2‖30 1.990e−5 1.95 8.827e−4 1.45 7.985e−4 1.07
4.558e−2‖38 1.248e−5 1.98 6.257e−4 1.46 6.233e−4 1.15
3.608e−2‖46 8.539e−6 1.99 4.733e−4 1.46 5.115e−4 1.03
3.093e−2‖54 6.205e−6 1.99 3.740e−4 1.47 4.339e−4 1.03
2.794e−2‖62 4.711e−6 1.99 3.052e−4 1.47 3.769e−4 1.02

Table 9
Convergence rates for the test problem #3 with ν = 0.05, structured mesh.

h‖n ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

7.873e−2‖22 3.649e−5 1.409e−4 1.114e−3
5.774e−2‖30 1.990e−5 1.95 8.934e−5 1.47 7.986e−4 1.07
4.558e−2‖38 1.248e−5 1.98 6.309e−5 1.47 6.233e−4 1.05
3.608e−2‖46 8.539e−6 1.99 4.773e−5 1.46 5.115e−4 1.03
3.093e−2‖54 6.205e−6 1.99 3.769e−5 1.47 4.339e−4 1.03
2.794e−2‖62 4.711e−6 1.99 3.073e−5 1.48 3.769e−4 1.02

Table 10
Convergence rates for the test problem #2 with ν = 0.5, unstructured mesh.

h ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

9.4515e−2 2.275e−2 4.502e−1 3.572e−1
7.6129e−2 1.435e−2 2.13 3.044e−1 1.81 2.706e−1 1.28
6.2010e−2 8.915e−3 2.32 2.297e−1 1.37 2.060e−1 1.33
4.8458e−2 5.542e−3 1.93 1.677e−1 1.28 1.595e−1 1.04
3.8869e−2 3.481e−3 2.11 1.210e−1 1.48 1.242e−1 1.16
3.1102e−2 2.177e−3 2.11 9.098e−2 1.28 9.756e−2 1.08

G_mean – 2.12 – 1.43 – 1.17

7.6. Example 3: Convergence Rate on Unstructured Meshes

In Tables 10–11, we present results analogous to Tables 6–7 computed for the test prob-
lem #2 but now on unstructured meshes. Since the convergence rates are scattered, we
characterize them by the geometrical mean in the rows labelled G_mean. Surprisingly,
the conference rates are in many cases better than on the structured meshes.

8. Conlusions and Comments

In this paper, we present main ideas for vectorized coding of matrices and vectors describ-
ing mixed finite element approximation based on the MINI element for the Navier–Stokes
system in 3D. It is shown that the vectorized operations are considerably faster than the
loop over tetrahedra. This allows to experiment with this problem in the user-friendly Mat-
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Table 11
Convergence rates for the test problem #2 with ν = 0.05, unstructured mesh.

h ‖u − uh‖
L2 Rate ‖p − ph‖

L2 Rate ‖u − uh‖
H1 Rate

9.4515e−2 2.275e−2 4.502e−1 3.572e−1
7.6129e−2 1.435e−2 2.13 3.044e−1 1.81 2.706e−1 1.28
6.2010e−2 8.915e−3 2.32 2.297e−1 1.37 2.060e−1 1.33
4.8458e−2 5.542e−3 1.93 1.677e−1 1.28 1.595e−1 1.04
3.8869e−2 3.481e−3 2.11 1.210e−1 1.48 1.242e−1 1.14
3.1102e−2 2.177e−3 2.11 9.098e−2 1.28 9.756e−2 1.08

G_mean – 2.11 – 1.43 – 1.17

lab environment. Note that our codes are freely available (Kučera et al., 2023) and include
also 2D case.

The dual implementation of the basic iterative schemes in Section 6 is a starting point
for more sophisticated problem with the stick-slip boundary condition, describing hy-
drophobia effect, e.g. in which the dual formulation is a natural tool (see Haslinger et al.,
2021). This scheme works well for small Reynold’s numbers.

Finally, we should point out that the results of our experiments are in agreement with
the theoretical convergence rates of the finite element approximation. Moreover, it ex-
tends observations of other authors on a superconvergence rate of the pressure component.
It confirms, among others, correctness of our codes.

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic through the e-INFRA CZ (ID:90140) and the internal VSB-TUO SGS-project.

References

Arnold, D.N., Brezzi, F., Fortin, M. (1984). A stable finite element for the Stokes equations. Calcolo, 21,
337–344.

Arzt, V. (2019). Finite Element Meshes and Assembling of Stiffness Matrices. Master’s thesis, VŠB-TU Ostrava,
Czech Republic (in Czech). https://dspace.vsb.cz/bitstream/handle/10084/137486/ARZ0009_USP_B3968_
3901R076_2019.pdf?sequence=1&isAllowed=y [online].

Boffi, D., Brezzi, F., Fortin, M. (2013). Mixed Finite Element Methods and Applications, Springer Series in
Computational Mathematics. Springer Verlag, Heidelberg, New York, Dordrecht, London.

Brezzi, F., Fortin, M. (1991). Mixed and Hybrid Finite Element Methods, Springer Series in Computational
Mathematics. Springer Verlag, Berlin.

Cioncolini, A., Boffi, D. (2019). The MINI mixed finite element for the Stokes problem: an experimental inves-
tigation. Computers and Mathematics with Applications, 77(9), 2432–2446.

Cioncolini, A., Boffi, D. (2022). Superconvergence of the MINI mixed finite element discretization of the Stokes
problem: an experimental study in 3D. Finite Elements in Analysis and Design, 201, 103706.

Eichel, H., Tobiska, L., Xie, H. (2011). Supercloseness and superconvergence of stabilized low-order finite
element discretizations of the Stokes problem. Mathematics of Computations, 80, 697–722.

Elman, H.C., Silvester, D.J., Wathen, A.J. (2014). Finite Elements and Fast Iterative Solvers: with Applications
in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation. Oxford University
Press, Oxford.

https://dspace.vsb.cz/bitstream/handle/10084/137486/ARZ0009_USP_B3968_3901R076_2019.pdf?sequence=1&isAllowed=y
https://dspace.vsb.cz/bitstream/handle/10084/137486/ARZ0009_USP_B3968_3901R076_2019.pdf?sequence=1&isAllowed=y


360 R. Kučera et al.

Fang, Q. (2018). Iso2mesh: a 3D surface and volumetric mesh generator for MATLAB/Octave. http://iso2mesh.
sourceforge.net [online].

Girault, V., Raviart, P.A. (1986). Finite Element Methods for Navier-Stokes Equations, Springer Series in Com-
putational Mathematics. Springer Verlag, Berlin.

Girault, V., Wheeler, M.F. (2008). Discontinuous Galerkin methods. In: Glowinski, R., Neittaanmäki, P. (Eds.),
Partial Differential Equations. Computational Methods in Applied Sciences, Vol. 16. Springer, Dordrecht,
pp. 2–26.

Griebel, M., Neunhoeffer, T., Regler, H. (1998). Algebraic multigrid methods for the solution of the Navier–
Stokes equations in complicated geometries. International Journal for Numerical Methods in Fluids, 26(3),
281–301.

Haslinger, J., Kučera, R., Sassi, T., Šátek, V. (2021). Dual strategies for solving the Stokes problem with stick-slip
boundary conditions in 3D. Mathematics and Computers in Simulation, 189, 191–206.

Henriksen, M.O., Holmen, J. (2002). Algebraic splitting for incompressible Navier–Stokes equations. Journal
of Computational Physics, 175(2), 438–453.

Hoanga, L.T., Martinez, V.R. (2018). Asymptotic expansion for solutions of the Navier–Stokes equations with
non-potential body forces. Journal of Mathematical Analysis and Applications, 462, 84–113.

IT4Innovations (2023). https://www.it4i.cz/en/infrastructure/karolina [online].
Koko, J. (2016). Fast MATLAB assembly of FEM matrices in 2D and 3D using cell array approach. International

Journal of Modeling, Simulation, and Scientific Computing, 7(2), 1650010.
Koko, J. (2019). Efficient MATLAB codes for the 2D/3D Stokes equation with the mini-element. Informatica,

30(2), 243–268.
Kučera, R., Arzt, V., Koko, J. (2023). Free available vectorized codes. https://homel.vsb.cz/~kuc14/programs/

ReferenceAssembling.zip [online].
Loghin, D., Wathen, A.J. (2002). Schur complement preconditioners for the Navier–Stokes equations. Interna-

tional Journal for Numerical Methods in Fluids, 40(3–4), 403–412.
Panasenko, G.P. (1998). Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure.

Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-mecanique Physique Astronomie, 326(12),
867–872.

Pernice, M., Tocci, M.D. (2001). A multigrid-preconditioned Newton–Krylov method for the incompressible
Navier–Stokes equations. SIAM Journal on Scientific Computing, 23, 398–418.

Rahman, T., Valdman, J. (2015). Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements.
Applied Mathematics and Computation, 267, 252–263.

Rønquist, E.M. (1996). A domain decomposition solver for the steady Navier-Stokes equations. In: Ilin, A.,
Scott, R. (Eds.), Proceedings of the 3rd International Conference on Spectral and High-Order Methods.
HJM, Houston, pp. 469–485.

Viguerie, A., Veneziani, A. (2018). Algebraic splitting methods for the steady incompressible Navier–Stokes
equations at moderate Reynolds numbers. Computer Methods in Applied Mechanics and Engineering, 330,
271–291.

http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
https://www.it4i.cz/en/infrastructure/karolina
https://homel.vsb.cz/~kuc14/programs/ReferenceAssembling.zip
https://homel.vsb.cz/~kuc14/programs/ReferenceAssembling.zip


MINI Element for the Navier–Stokes System in 3D 361

R. Kučera is a full professor at Department of Mathematics and Descriptive Geometry
at the VSB–Technical University of Ostrava, Czech Republic. His research interests in-
clude numerical linear algebra and numerical optimization with applications to contact
problems for linear elastic bodies and flow problems with stick-slip boundary conditions.

V. Arzt is a PhD student at Department of Applied Mathematics at the VSB–Technical
University of Ostrava, Czech Republic. His research interests include numerical optimiza-
tion with applications to solving PDEs with the stick-slip boundary conditions and shape
optimization problems.

J. Koko is an associate professor of applied mathematics in School of Computer Science
at Université Clermont Auvergne, France. His research interests include scientific/parallel
computing, numerical optimization and applications to nonlinear mechanics.


	Introduction
	Formulation
	Mixed Finite Element Approximation with the MINI Element
	Element Matrices
	Derivatives of the Basis Functions
	Approximation of the Velocity Derivatives
	Stokes Matrices
	Oseen and Newton Convection Matrices
	Right-Hand Side Vectors
	Bubble Components Elimination

	Vectorized Coding
	Algebraic Iterative Scheme
	Numerical Experiments
	Test Problem #1
	Test Problem #2
	Test Problem #3
	Example 1: Time Demands
	Example 2: Convergence Rate on Structured Meshes
	Example 3: Convergence Rate on Unstructured Meshes

	Conlusions and Comments

