1 Introduction
2 Methods
2.1 Dragonfly Algorithm
2.2 Hybrid Dragonfly Algorithm with Differential Evolution
2.3 Quantum-Behaved and Gaussian Mutational Dragonfly Algorithm
2.4 Memory-Based Hybrid Dragonfly Algorithm
2.5 Chaotic Dragonfly Algorithm
2.6 Biogeography-Based Mexican Hat Wavelet Dragonfly Algorithm
2.7 Hybrid Nelder-Mead Algorithm and Dragonfly Algorithm
2.8 Hybridization of Dragonfly Algorithm and Artificial Bee Colony
2.9 Fuzzy MARCOS
(1)
\[ X=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{x_{11}}\hspace{1em}& {x_{12}}\hspace{1em}& \dots \hspace{1em}& {x_{1j}}\hspace{1em}& \dots \hspace{1em}& {x_{1n}}\\ {} {x_{21}}\hspace{1em}& {x_{22}}\hspace{1em}& \dots \hspace{1em}& {x_{2j}}\hspace{1em}& \dots \hspace{1em}& {x_{2n}}\\ {} \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \\ {} {x_{i1}}\hspace{1em}& {x_{i2}}\hspace{1em}& \dots \hspace{1em}& {x_{ij}}\hspace{1em}& \dots \hspace{1em}& {x_{in}}\\ {} \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \\ {} {x_{m1}}\hspace{1em}& {x_{m2}}\hspace{1em}& \dots \hspace{1em}& {x_{mj}}\hspace{1em}& \dots \hspace{1em}& {x_{mn}}\end{array}\right],\](4)
\[ {X^{\prime }}=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{x_{ai1}}\hspace{1em}& {x_{ai2}}\hspace{1em}& \dots \hspace{1em}& {x_{aij}}\hspace{1em}& \dots \hspace{1em}& {x_{ain}}\\ {} {x_{11}}\hspace{1em}& {x_{12}}\hspace{1em}& \dots \hspace{1em}& {x_{1j}}\hspace{1em}& \dots \hspace{1em}& {x_{1n}}\\ {} \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \hspace{1em}& \dots \\ {} {x_{i1}}\hspace{1em}& {x_{i2}}\hspace{1em}& \dots \hspace{1em}& {x_{ij}}\hspace{1em}& \dots \hspace{1em}& {x_{in}}\\ {} {x_{m1}}\hspace{1em}& {x_{m2}}\hspace{1em}& \dots \hspace{1em}& {x_{mj}}\hspace{1em}& \dots \hspace{1em}& {x_{mn}}\\ {} {x_{id1}}\hspace{1em}& {x_{id2}}\hspace{1em}& \dots \hspace{1em}& {x_{idj}}\hspace{1em}& \dots \hspace{1em}& {x_{idn}}\end{array}\right].\](7)
\[ {\tilde{v}_{ij}}=\big({v_{ij}^{l}},{v_{ij}^{m}},{v_{ij}^{u}}\big)={n_{ij}}\otimes {\tilde{w}_{j}}=\big({n_{ij}}\times {w_{j}^{l}},{n_{ij}}\times {w_{j}^{m}},{n_{ij}}\times {w_{j}^{u}}\big),\]3 Problem Description
4 Numerical Results on Chemical Process Optimization
4.1 Case Study 1: Heat Exchanger Network Design (HEND)
(17)
\[\begin{aligned}{}& f(\bar{x})=35{x_{1}^{0.6}}+35{x_{2}^{0.6}},\\ {} & {h_{1}}(\bar{x})=200{x_{1}}{x_{4}}-{x_{3}}=0,\\ {} & {h_{2}}(\bar{x})=200{x_{2}}{x_{6}}-{x_{5}}=0,\\ {} & {h_{3}}(\bar{x})={x_{3}}-10000({x_{7}}-100)=0,\\ {} & {h_{4}}(\bar{x})={x_{5}}-10000(300-{x_{7}})=0,\\ {} & {h_{5}}(\bar{x})={x_{3}}-10000(600-{x_{8}})=0,\\ {} & {h_{6}}(\bar{x})={x_{5}}-10000(900-{x_{9}})=0,\\ {} & {h_{7}}(\bar{x})={x_{4}}\ln ({x_{8}}-100)-{x_{4}}\ln (600-{x_{7}})-{x_{8}}+{x_{7}}+500=0,\\ {} & {h_{8}}(\bar{x})={x_{6}}\ln ({x_{9}}-{x_{7}})-{x_{6}}\ln (600)-{x_{9}}+{x_{7}}+600=0,\\ {} & 0\leqslant {x_{1}}\leqslant 10,\hspace{1em}0\leqslant {x_{2}}\leqslant 200,\hspace{1em}0\leqslant {x_{3}}\leqslant 100,\hspace{1em}0\leqslant {x_{4}}\leqslant 200,\\ {} & 1000\leqslant {x_{5}}\leqslant 2000000,\hspace{1em}0\leqslant {x_{6}}\leqslant 600,\hspace{1em}100\leqslant {x_{7}}\leqslant 600,\hspace{1em}100\leqslant {x_{8}}\leqslant 600,\\ {} & 100\leqslant {x_{9}}\leqslant 900.\end{aligned}\]Table 1
DADE | QGDA | MHDA | BMDA | INMDA | HDA | CDA | DA | |
${x_{1}}$ | 0.052351 | $1.44\mathrm{E}-06$ | $2.92\mathrm{E}-05$ | $4.58\mathrm{E}-07$ | $8.65\mathrm{E}-08$ | $4.61\mathrm{E}-13$ | 0.011093 | $4.58\mathrm{E}-06$ |
${x_{2}}$ | 15.97275 | 16.66409 | 16.66889 | 16.66681 | 16.66669 | 16.66667 | 16.80441 | 16.66939 |
${x_{3}}$ | 87.17488 | 66.77105 | 0.83742 | 0.01812 | 0.003442 | $1.58\mathrm{E}-05$ | 57.77835 | 47.67126 |
${x_{4}}$ | 33.51656 | 99.85326 | 143.3811 | 197.9965 | 198.9125 | 123.661 | 124.0067 | 23.45766 |
${x_{5}}$ | 1971712 | 1999763 | 1999999 | 2000000 | 2000000 | 2000000 | 1958385 | 1999885 |
${x_{6}}$ | 595.4896 | 599.993 | 599.9197 | 599.9949 | 599.999 | 600 | 585.1924 | 599.8195 |
${x_{7}}$ | 101.3036 | 100.0403 | 100.0001 | 100 | 100 | 100 | 102.4928 | 100.0042 |
${x_{8}}$ | 599.2642 | 599.9864 | 599.9999 | 600 | 600 | 600 | 599.251 | 599.9945 |
${x_{9}}$ | 701.4332 | 700.0313 | 700.0001 | 700 | 700 | 700 | 704.8981 | 699.9442 |
${f_{\text{min}}}$ | 190.5047 | 189.305 | 189.3934 | 189.3181 | 189.3138 | 189.3116 | 192.599 | 189.3521 |
${f_{\text{mean}}}$ | 191.4536 | 190.2539 | 190.3423 | 190.267 | 190.2627 | 190.2605 | 193.5479 | 190.301 |
${f_{\text{std}}}$ | 0.789 | 0.082 | 0.915 | 0.864 | 0.525 | 0.727 | 0.940 | 0.836 |
Run time | 3.2125 | 4.60625 | 7.570313 | 7.254688 | 7.303125 | 5.41875 | 7.290625 | 5.2125 |
FNRT ${T_{\text{Rank}}}$ | 4.7 | 3.2 | 4.7 | 4.8 | 4.8 | 5.1 | 4.7 | 4 |
4.2 Case Study 2: Optimal Operation of Alkylation Unit (OOAU)
(18)
\[\begin{aligned}{}& f(\bar{x})=0.035{x_{1}}{x_{6}}+1.715{x_{1}}+10.0{x_{2}}+4.0565{x_{3}}-0.063{x_{3}}{x_{5}},\\ {} & {g_{1}}(\bar{x})=0.0059553571{x_{6}^{2}}{x_{1}}+0.88392857{x_{3}}-0.1175625{x_{6}}{x_{1}}-{x_{1}}\leqslant 0,\\ {} & {g_{2}}(\bar{x})=1.1088{x_{1}}+0.1303533{x_{1}}{x_{6}}-0.0066033{x_{1}}{x_{6}^{2}}-{x_{3}}\leqslant 0,\\ {} & {g_{3}}(\bar{x})=6.66173269{x_{6}^{2}}-56.596669{x_{4}}+172.39878{x_{5}}-10000-191.20592{x_{6}}\leqslant 0,\\ {} & {g_{4}}(\bar{x})=1.08702{x_{6}}-0.3762{x_{6}^{2}}+0.32175{x_{4}}+56.85075-{x_{5}}\leqslant 0,\\ {} & {g_{5}}(\bar{x})=0.006198{x_{7}}{x_{4}}{x_{3}}+2462.3121{x_{2}}-25.125634{x_{2}}{x_{4}}-{x_{3}}{x_{4}}\leqslant 0,\\ {} & {g_{6}}(\bar{x})=161.18996{x_{3}}{x_{4}}+5000.0{x_{2}}{x_{4}}-489510.0{x_{2}}-{x_{3}}{x_{4}}{x_{7}}\leqslant 0,\\ {} & {g_{7}}(\bar{x})=0.33{x_{7}}{x_{4}}+44.333333\leqslant 0,\\ {} & {g_{8}}(\bar{x})=0.022556{x_{5}}-1.0{x_{2}}-0.007595{x_{7}}\leqslant 0,\\ {} & {g_{9}}(\bar{x})=0.00061{x_{3}}-1.0-0.0005{x_{1}}\leqslant 0,\\ {} & {g_{10}}(\bar{x})=0.819672{x_{1}}-{x_{3}}+0.819672\leqslant 0,\\ {} & {g_{11}}(\bar{x})=24500.0{x_{2}}-250.0.0{x_{2}}{x_{4}}-{x_{3}}{x_{4}}\leqslant 0,\\ {} & {g_{12}}(\bar{x})=1020.4082{x_{2}}{x_{4}}+1.2244898{x_{3}}{x_{4}}-100000{x_{2}}\leqslant 0,\\ {} & {g_{13}}(\bar{x})=6.25{x_{1}}{x_{6}}+6.25{x_{1}}-7.625{x_{3}}-100000\leqslant 0,\\ {} & {g_{14}}(\bar{x})=1.22{x_{3}}-{x_{1}}{x_{6}}-{x_{1}}\leqslant 0,\\ {} & 10000\leqslant {x_{1}}\leqslant 2000,\hspace{1em}0\leqslant {x_{2}}\leqslant 100,\hspace{1em}2000\leqslant {x_{3}}\leqslant 4000,\hspace{1em}0\leqslant {x_{4}}\leqslant 100,\\ {} & 0\leqslant {x_{5}}\leqslant 100,\hspace{1em}0\leqslant {x_{6}}\leqslant 20,\hspace{1em}0\leqslant {x_{7}}\leqslant 200.\end{aligned}\]Table 2
DADE | QGDA | MHDA | BMDA | INMDA | HDA | CDA | DA | |
${x_{1}}$ | 1362.7004 | 1364.9895 | 1365.0069 | 1365.0087 | 1364.4943 | 1364.8813 | 1365.009 | 1365.0091 |
${x_{2}}$ | 99.957173 | 99.99925 | 99.999969 | 99.999997 | 99.997169 | 99.994546 | 100 | 99.999999 |
${x_{3}}$ | 2000.1839 | 2000.0086 | 2000.0046 | 2000.0001 | 2000.328 | 2000.0167 | 2000.0009 | 2000 |
${x_{4}}$ | 90.745206 | 90.740691 | 90.740725 | 90.740741 | 90.741674 | 90.740325 | 90.740738 | 90.740741 |
${x_{5}}$ | 91.03223 | 91.015261 | 91.015162 | 91.015122 | 91.018349 | 91.015422 | 91.015123 | 91.01512 |
${x_{6}}$ | 3.307297 | 3.2787429 | 3.2786118 | 3.2785546 | 3.2857938 | 3.280122 | 3.2785563 | 3.2785504 |
${x_{7}}$ | 141.48571 | 141.46021 | 141.46006 | 141.45996 | 141.46966 | 141.46005 | 141.45996 | 141.45996 |
${f_{\text{min}}}$ | −136.97331 | −142.65288 | −142.70488 | −142.71839 | −141.13781 | −142.43987 | −142.71733 | −142.71923 |
${f_{\text{mean}}}$ | −136.18861 | −141.86818 | −141.92018 | −141.93369 | −140.35311 | −141.65517 | −141.93263 | −141.93453 |
${f_{\text{std}}}$ | 0.005292 | 0.0008229 | 0.049782 | 0.0451094 | 0.0024717 | 0.0104315 | 0.002072 | 0.0328824 |
Run time | 4.0140625 | 6.9 | 9.18125 | 9.4265625 | 9.39375 | 5.9734375 | 9.515625 | 5.596875 |
FNRT ${_{\text{Rank}}}$ | 3.4 | 3.2 | 5.1 | 5.2 | 5.8 | 5.2 | 3.9 | 3.4 |
4.3 Case Study 3: Reactor Network Design (RND)
(19)
\[\begin{aligned}{}& f(\bar{x})={x_{4}},\\ {} & {h_{1}}(\bar{x})={k_{1}}{x_{2}}{x_{5}}+{x_{1}}-1=0,\\ {} & {h_{2}}(\bar{x})={k_{3}}{x_{3}}{x_{5}}+{x_{1}}+{x_{3}}-1=0,\\ {} & {h_{3}}(\bar{x})={k_{2}}{x_{2}}{x_{6}}-{x_{1}}-{x_{2}}=0,\\ {} & {h_{4}}(\bar{x})={k_{4}}{x_{4}}{x_{6}}+{x_{2}}-{x_{1}}+{x_{4}}-{x_{3}}=0,\\ {} & {g_{1}}(\bar{x})={x_{5}^{0.5}}+{x_{6}^{0.5}}\leqslant 4,\\ {} & 0\leqslant {x_{1}},{x_{2}},{x_{3}},{x_{4}}\leqslant 1,\hspace{1em}0.00001\leqslant {x_{5}},{x_{6}}\leqslant 16,\end{aligned}\]Table 3
DADE | QGDA | MHDA | BMDA | INMDA | HDA | CDA | DA | |
${x_{1}}$ | 0.9999763 | 0.9999369 | 0.3944072 | 0.3919993 | 0.9945312 | 0.9999841 | 0.3940459 | 0.9976073 |
${x_{2}}$ | 0.4354706 | 0.4665822 | 0.3943078 | 0.3918984 | 0.4360605 | 0.398256 | 0.3939394 | 0.4420572 |
${x_{3}}$ | $2.495\mathrm{E}-09$ | $8.385\mathrm{E}-09$ | 0.3746106 | 0.3746492 | 0.0054414 | 0.0001139 | 0.374615 | 0.0024281 |
${x_{4}}$ | 0.3832139 | 0.3763675 | 0.3748098 | 0.3748497 | 0.384213 | 0.3879295 | 0.3748192 | 0.3825421 |
${x_{5}}$ | 0.0025721 | 0.0006354 | 15.739914 | 15.899662 | 0.1285526 | 0.002037 | 15.764036 | 0.0540139 |
${x_{6}}$ | 13.419795 | 11.83318 | $1.037\mathrm{E}-05$ | $2.24\mathrm{E}-05$ | 13.26011 | 15.640824 | 0.0001726 | 13.009488 |
${f_{\text{min}}}$ | −0.383214 | −0.376367 | −0.374810 | −0.374850 | −0.384213 | −0.387929 | −0.374819 | −0.382542 |
${f_{\text{mean}}}$ | −0.2162199 | −0.1976946 | −0.1846461 | −0.0677247 | −0.0037783 | −0.1555713 | −0.1157014 | −0.292938 |
${f_{\text{std}}}$ | 0.1684727 | 0.1727503 | 0.1832099 | 0.1193487 | 0.0110534 | 0.1777097 | 0.1727922 | 0.1403655 |
Run time | 2.68125 | 4.9203125 | 8.4046875 | 8.440625 | 4.9046875 | 6.065625 | 8.0796875 | 8.4 |
FNRT ${_{\text{Rank}}}$ | 4 | 3.7 | 4.3 | 4.5 | 7.4 | 4.8 | 4.8 | 2.5 |
4.4 Case Study 4: Haverly’s Pooling Problem (HPP)
(20)
\[\begin{aligned}{}& f(\bar{x})=9{x_{1}}+15{x_{2}}-6{x_{3}}-16{x_{4}}-10({x_{5}}+{x_{6}}),\\ {} & {h_{1}}(\bar{x})={x_{7}}+{x_{8}}-{x_{4}}-{x_{3}}=0,\\ {} & {h_{2}}(\bar{x})={x_{1}}-{x_{5}}-{x_{7}}=0,\\ {} & {h_{3}}(\bar{x})={x_{2}}-{x_{6}}-{x_{8}}=0,\\ {} & {h_{4}}(\bar{x})={x_{7}}{x_{9}}+{x_{8}}{x_{9}}-3{x_{3}}-{x_{4}}=0,\\ {} & {g_{1}}(\bar{x})={x_{7}}{x_{9}}+2{x_{5}}-2.5{x_{1}}\leqslant 0,\\ {} & {g_{2}}(\bar{x})={x_{8}}{x_{9}}+2{x_{6}}-1.5{x_{2}}\leqslant 0,\\ {} & 0\leqslant {x_{1}},{x_{3}},{x_{4}},{x_{5}},{x_{6}},{x_{8}}\leqslant 100,\hspace{1em}0\leqslant {x_{2}},{x_{7}},{x_{9}}\leqslant 200.\end{aligned}\]Table 4
DADE | QGDA | MHDA | BMDA | INMDA | HDA | CDA | DA | |
${x_{1}}$ | 0.0001505 | $9.983\mathrm{E}-05$ | 0.0001034 | $1.127\mathrm{E}-05$ | 0.9561836 | 0.0181292 | 0.0001372 | 1.9123671 |
${x_{2}}$ | 199.99996 | 199.99997 | 199.99999 | 199.99927 | 199.19222 | 199.93562 | 199.99961 | 198.38445 |
${x_{3}}$ | $9.63\mathrm{E}-05$ | 0.0001411 | 0.0001513 | $9.324\mathrm{E}-06$ | 0 | 0 | $2.284\mathrm{E}-06$ | 0 |
${x_{4}}$ | 99.999692 | 99.999637 | 99.999648 | 99.999939 | 99.609244 | 99.999977 | 99.999819 | 99.218489 |
${x_{5}}$ | $5.243\mathrm{E}-05$ | $1.227\mathrm{E}-06$ | $3.414\mathrm{E}-06$ | $2.773\mathrm{E}-06$ | 0.9438356 | 0.0176439 | 0.000137 | 1.8876711 |
${x_{6}}$ | 99.999991 | 99.999994 | 99.99999 | 99.999345 | 99.595327 | 99.936127 | 99.999653 | 99.190654 |
${x_{7}}$ | $8.313\mathrm{E}-06$ | $1.504\mathrm{E}-06$ | $5.335\mathrm{E}-07$ | $1.794\mathrm{E}-05$ | 0.012348 | 0.0004854 | $5.582\mathrm{E}-07$ | 0.0246959 |
${x_{8}}$ | 99.999875 | 99.999876 | 99.999899 | 99.999928 | 99.596896 | 99.999491 | 99.999921 | 99.193792 |
${x_{9}}$ | 1.0000004 | 1.0000009 | 1.000001 | 1.0000002 | 0.9999999 | 1 | 0.9999992 | 0.9999999 |
${f_{\text{min}}}$ | −400.00475 | −400.00546 | −400.00555 | −399.99661 | −397.34948 | −399.66011 | −400.00041 | −394.69895 |
${f_{\text{mean}}}$ | −399.04995 | −399.05066 | −399.05075 | −399.04181 | −396.39468 | −398.70531 | −399.04561 | −393.74415 |
${f_{\text{std}}}$ | 0.3171725 | 0.3181686 | 0.2615975 | 0.2643702 | 0.3889547 | 0.552458 | 0.3975508 | 0.2672359 |
Run time | 2.0260417 | 4.109375 | 7.1916667 | 4.1302083 | 7.1614583 | 4.98125 | 7.1458333 | 7.1791667 |
FNRT ${_{\text{Rank}}}$ | 4.10 | 3.77 | 5.00 | 4.77 | 4.93 | 5.27 | 4.33 | 3.83 |
5 Fuzzy MARCOS-Based Ranking of the DA Variants
Table 5
Problem | HEND | OOAU | RND | HPP | Aggregated | ||||||||||
Criteria | T | F | C | T | F | C | T | F | C | T | F | C | T | F | C |
DADE | 1 | 3 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 1 | 3 | 1 | 1.00 | 2.75 | 1.50 |
QGDA | 2 | 1 | 7 | 4 | 1 | 3 | 3 | 2 | 6 | 2 | 1 | 4 | 2.75 | 1.25 | 5.00 |
MHDA | 8 | 3 | 6 | 5 | 5 | 5 | 7 | 4 | 3 | 8 | 7 | 2 | 7.00 | 4.75 | 4.00 |
BMDA | 5 | 6 | 3 | 7 | 6 | 7 | 8 | 5 | 7 | 3 | 5 | 8 | 5.75 | 5.50 | 6.25 |
INMDA | 7 | 6 | 8 | 6 | 8 | 8 | 2 | 8 | 4 | 6 | 6 | 7 | 5.25 | 7.00 | 6.75 |
HDA | 4 | 8 | 2 | 3 | 6 | 4 | 4 | 6 | 1 | 4 | 8 | 5 | 3.75 | 7.00 | 3.00 |
CDA | 6 | 3 | 5 | 8 | 4 | 6 | 5 | 6 | 5 | 5 | 4 | 6 | 6.00 | 4.25 | 5.50 |
DA | 3 | 2 | 4 | 2 | 2 | 1 | 6 | 1 | 8 | 7 | 2 | 3 | 4.50 | 1.75 | 4.00 |
Table 6
Linguistic term for criteria importance | Symbol | Triangular fuzzy number |
Extremely Poor | EP | $(1,1,1)$ |
Very Poor | VP | $(1,1,3)$ |
Poor | P | $(1,3,3)$ |
Medium Poor | MP | $(3,3,5)$ |
Medium | M | $(3,5,5)$ |
Medium Good | MG | $(5,5,7)$ |
Good | G | $(5,7,7)$ |
Very Good | VG | $(7,7,9)$ |
Extremely Good | EG | $(7,9,9)$ |
Table 7
Decision maker | Linguistic term | Triangular fuzzy number | ||||
T | F | C | T | F | C | |
Expert 1 | VG | EG | G | $(7,7,9)$ | $(7,9,9)$ | $(5,7,7)$ |
Expert 2 | MG | G | VP | $(5,5,7)$ | $(5,5,7)$ | $(1,1,3)$ |
Expert 3 | P | MG | M | $(1,3,3)$ | $(5,5,7)$ | $(3,5,5)$ |
Expert 4 | MP | G | MG | $(3,3,5)$ | $(5,7,7)$ | $(5,7,7)$ |
Expert 5 | M | VG | G | $(3,5,5)$ | $(7,7,9)$ | $(5,7,7)$ |
Table 8
Problem | Decision matrix | Normalized decision matrix | ||||
Criteria | T | F | C | T | F | C |
DADE | 1.00 | 2.75 | 1.50 | 1.0000 | 0.4545 | 1.0000 |
QGDA | 2.75 | 1.25 | 5.00 | 0.3636 | 1.0000 | 0.3000 |
MHDA | 7.00 | 4.75 | 4.00 | 0.1429 | 0.2632 | 0.3750 |
BMDA | 5.75 | 5.50 | 6.25 | 0.1739 | 0.2273 | 0.2400 |
INMDA | 5.25 | 7.00 | 6.75 | 0.1905 | 0.1786 | 0.2222 |
HDA | 3.75 | 7.00 | 3.00 | 0.2667 | 0.1786 | 0.5000 |
CDA | 6.00 | 4.25 | 5.50 | 0.1667 | 0.2941 | 0.2727 |
DA | 4.50 | 1.75 | 4.00 | 0.2222 | 0.7143 | 0.3750 |
Anti-ideal (AI) solution | 1.00 | 1.25 | 1.50 | 1.00 | 1.00 | 1.00 |
Ideal (ID) solutions | 7.00 | 7.00 | 6.75 | 0.1429 | 0.1786 | 0.2222 |
Table 9
Alternative | T | F | C | ${\tilde{S}_{i}}$ |
AI | $(0.543,0.657,0.827)$ | $(1.036,1.25,1.393)$ | $(0.844,1.111,1.289)$ | $(2.423,3.018,3.510)$ |
DADE | $(3.800,4.600,5.800)$ | $(2.636,3.182,3.545)$ | $(3.800,5.000,5.800)$ | $(10.236,12.782,15.145)$ |
QGDA | $(1.382,1.673,2.109)$ | $(5.800,7.000,7.800)$ | $(1.140,1.500,1.740)$ | $(8.322,10.173,11.649)$ |
MHDA | $(0.543,0.657,0.829)$ | $(1.526,1.842,2.053)$ | $(1.425,1.875,2.175)$ | $(3.494,4.374,5.056)$ |
BMDA | $(0.661,0.800,1.009)$ | $(1.318,1.591,1.773)$ | $(0.912,1.200,1.392)$ | $(2.891,3.591,4.173)$ |
INMDA | $(0.724,0.876,1.105)$ | $(1.036,1.250,1.393)$ | $(0.844,1.111,1.289)$ | $(2.604,3.237,3.786)$ |
HDA | $(1.013,1.227,1.547)$ | $(1.036,1.250,1.393)$ | $(1.900,2.500,2.900)$ | $(3.949,4.977,5.839)$ |
CDA | $(0.633,0.767,0.967)$ | $(1.706,2.059,2.294)$ | $(1.036,1.364,1.582)$ | $(3.376,4.189,4.843)$ |
DA | $(0.844,1.022,1.289)$ | $(4.143,5.000,5.571)$ | $(1.425,1.875,2.175)$ | $(6.412,7.897,9.035)$ |
ID | $(3.800,4.600,5.800)$ | $(5.800,7.000,7.800)$ | $(3.800,5.000,5.800)$ | $(13.400,16.600,19.400)$ |
Table 10
Alternative | Utility degree | Utility function | ||
${\tilde{K}_{i}^{-}}$ | ${\tilde{K}_{i}^{+}}$ | $f({\tilde{K}_{i}^{-}})$ | $f({\tilde{K}_{i}^{+}})$ | |
DADE | $(2.916,4.235,6.251)$ | $(0.528,0.770,1.130)$ | $(0.103,0.150,0.220)$ | $(0.567,0.824,1.216)$ |
QGDA | $(2.371,3.370,4.808)$ | $(0.429,0.613,0.869)$ | $(0.083,0.119,0.169)$ | $(0.461,0.656,0.935)$ |
MHDA | $(0.995,1.449,2.087)$ | $(0.180,0.263,0.377)$ | $(0.035,0.051,0.073)$ | $(0.194,0.282,0.406)$ |
BMDA | $(0.824,1.190,1.722)$ | $(0.149,0.216,0.311)$ | $(0.029,0.042,0.067)$ | $(0.160,0.231,0.335)$ |
INMDA | $(0.742,1.073,1.563)$ | $(0.134,0.195,0.283)$ | $(0.026,0.038,0.055)$ | $(0.144,0.209,0.304)$ |
HDA | $(1.125,1.649,2.410)$ | $(0.204,0.300,0.436)$ | $(0.040,0.058,0.085)$ | $(0.219,0.321,0.469)$ |
CDA | $(0.962,1.388,1.999)$ | $(0.174,0.252,0.361)$ | $(0.034,0.049,0.070)$ | $(0.187,0.270,0.389)$ |
DA | $(1.827,2.616,3.729)$ | $(0.330,0.476,0.674)$ | $(0.064,0.092,0.131)$ | $(0.355,0.509,0.725)$ |
Table 11
Alternative | ${K_{i}^{-}}$ | ${K_{i}^{+}}$ | $f({K_{i}^{-}})$ | $f({K_{i}^{+}})$ | $\frac{(1-f({K_{i}^{-}}))}{f({K_{i}^{-}})}$ | $\frac{(1-f({K_{i}^{+}}))}{f({K_{i}^{+}})}$ | $f({K_{i}})$ | Rank |
DADE | 4.3510 | 0.7896 | 0.1536 | 0.8464 | 5.5101 | 0.1815 | 0.7682 | 1 |
QGDA | 3.4433 | 0.6249 | 0.1216 | 0.6698 | 7.2260 | 0.4929 | 0.4666 | 2 |
MHDA | 1.4799 | 0.2686 | 0.0522 | 0.2879 | 18.1402 | 2.4737 | 0.0809 | 5 |
BMDA | 1.2175 | 0.2210 | 0.0430 | 0.2368 | 22.2653 | 3.2224 | 0.0543 | 7 |
INMDA | 1.0991 | 0.1995 | 0.0388 | 0.2138 | 24.7705 | 3.6770 | 0.0441 | 8 |
HDA | 1.6884 | 0.3064 | 0.0596 | 0.3284 | 15.7763 | 2.0447 | 0.1060 | 4 |
CDA | 1.4187 | 0.2575 | 0.0501 | 0.2760 | 18.9661 | 2.6236 | 0.0742 | 6 |
DA | 2.6703 | 0.4846 | 0.0943 | 0.5194 | 9.6075 | 0.9251 | 0.2736 | 3 |