1 Introduction
-
• This paper introduces the concepts of C-PFS and circular Pythagorean fuzzy value (C-PFV).
-
• A method is developed to transform a collection of Pythagorean fuzzy values (PFVs) to a C-PFV. In this way, multi-criteria group decision making (MCGDM) problem can be relieved.
-
• The membership and non-membership of an element to a C-PFS are represented by circles. Thanks to its structure, a more sensitive modelling can be done in MCDM theory in the continuous environment.
-
• Some algebraic operations are defined for C-PFVs via t-norms and t-conorms. With the help of these operations, some weighted arithmetic and geometric aggregation operators are provided. These aggregation operators are used in MCDM and MCGDM.
2 Preliminaries
Definition 1 (Atanassov, 1986).
Definition 2 (Yager 2013a, 2013b).
Definition 3 (Klement et al., 2002; Schweizer and Sklar, 1983).
-
(T1) $T(x,1)=x$ for all $x\in [0,1]$ (border condition),
-
(T2) $T(x,y)=T(y,x)$ for all $x,y\in [0,1]$ (commutativity),
-
(T3) $T(x,T(y,z))=T(T(x,y),z)$ for all $x,y,z\in [0,1]$ (associativity),
-
(T4) $T(x,y)\leqslant T({x^{\prime }},{y^{\prime }})$ whenever $x\leqslant {x^{\prime }}$ and $y\leqslant {y^{\prime }}$ for all $x,{x^{\prime }},y,{y^{\prime }}\in [0,1]$ (monotonicity).
Definition 4 (Klement et al., 2002; Schweizer and Sklar, 1983).
-
(S1) $S(x,0)=x$ for all $x\in [0,1]$ (border condition),
-
(S2) $S(x,y)=S(y,x)$ for all $x,y\in [0,1]$ (commutativity),
-
(S3) $S(x,S(y,z))=S(S(x,y),z)$ for all $x,y,z\in [0,1]$ (associativity),
-
(S4) $S(x,y)\leqslant S({x^{\prime }},{y^{\prime }})$ whenever $x\leqslant {x^{\prime }}$ and $y\leqslant {y^{\prime }}$ for all $x,{x^{\prime }},y,{y^{\prime }}\in [0,1]$ (monotonicity).
Definition 5 (Klement et al. 2002, 2004a).
Definition 7 (Klir and Yuan, 1995; Yang et al., 2019).
Theorem 1 (Klement et al., 2004b).
3 Circular Pythagorean Fuzzy Sets
Definition 8 (Atanassov, 2020).
Definition 9.
Definition 10.
Remark 3.
Definition 11.
Example 2.
Theorem 2.
-
1) ${({A_{r}}{\cup _{\min }}{B_{s}})^{c}}={A_{r}}i{^{c}}{\cap _{\min }}{B_{s}}i{^{c}}$;
-
2) ${({A_{r}}{\cup _{\max }}{B_{s}})^{c}}={A_{r}}i{^{c}}{\cap _{\max }}{B_{s}}i{^{c}}$;
-
3) ${({A_{r}}{\cap _{\min }}{B_{s}})^{c}}={A_{r}}i{^{c}}{\cup _{\min }}{B_{s}}i{^{c}}$;
-
4) ${({A_{r}}{\cap _{\max }}{B_{s}})^{c}}={A_{r}}i{^{c}}{\cup _{\max }}{B_{s}}i{^{c}}$.
Proposition 1.
Proof.
Example 3.
Fig. 5
Definition 12.
-
a) $\alpha {\oplus _{\min }}\beta =\Big\langle \sqrt{{\mu _{\alpha }^{2}}+{\mu _{\beta }^{2}}-{\mu _{\alpha }^{2}}{\mu _{\beta }^{2}}},{\nu _{1}}{\nu _{2}};\min ({r_{\alpha }},{r_{\beta }})\Big\rangle $,
-
b) $\alpha {\oplus _{\max }}\beta =\Big\langle \sqrt{{\mu _{\alpha }^{2}}+{\mu _{\beta }^{2}}-{\mu _{\alpha }^{2}}{\mu _{\beta }^{2}}},{\nu _{1}}{\nu _{2}};\max ({r_{\alpha }},{r_{\beta }})\Big\rangle $,
-
c) $\alpha {\otimes _{\min }}\beta =\Big\langle {\mu _{\alpha }}{\mu _{\beta }},\sqrt{{\nu _{\alpha }^{2}}+{\nu _{\beta }^{2}}-{\nu _{\alpha }^{2}}{\nu _{\beta }^{2}}};\min ({r_{\alpha }},{r_{\beta }})\Big\rangle $,
-
d) $\alpha {\otimes _{\max }}\beta =\Big\langle {\mu _{\alpha }}{\mu _{\beta }},\sqrt{{\nu _{\alpha }^{2}}+{\nu _{\beta }^{2}}-{\nu _{\alpha }^{2}}{\nu _{\beta }^{2}}};\max ({r_{\alpha }},{r_{\beta }})\Big\rangle $.
Definition 13.
-
a) $\alpha {\oplus _{Q}}\beta =\langle S({\mu _{\alpha }},{\mu _{\beta }}),T({\nu _{\alpha }},{\nu _{\beta }});Q({r_{\alpha }},{r_{\beta }})\rangle $,
-
b) $\alpha {\otimes _{Q}}\beta =\langle T({\mu _{\alpha }},{\mu _{\beta }}),S({\nu _{\alpha }},{\nu _{\beta }});Q({r_{\alpha }},{r_{\beta }})\rangle $.
Proposition 2.
Proof.
Definition 14.
-
a) $\alpha {\oplus _{q}}\beta =\big\langle {h^{-1}}(h({\mu _{\alpha }})+h({\mu _{\beta }})),{g^{-1}}(g({\nu _{\alpha }})+g({\nu _{\beta }}));{q^{-1}}(q({r_{\alpha }})+q({r_{\beta }}))\big\rangle $,
-
b) $\alpha {\otimes _{q}}\beta =\big\langle {g^{-1}}(g({\mu _{\alpha }})+g({\mu _{\beta }})),{h^{-1}}(h({\nu _{\alpha }})+h({\nu _{\beta }}));{q^{-1}}(q({r_{\alpha }})+q({r_{\beta }}))\big\rangle $,
-
c) ${\lambda _{q}}\alpha =\big\langle {h^{-1}}(\lambda h({\mu _{\alpha }})),{g^{-1}}(\lambda g({\nu _{\alpha }}));{q^{-1}}(\lambda q({r_{\alpha }}))\big\rangle $,
-
d) ${\alpha ^{{\lambda _{q}}}}=\big\langle {g^{-1}}(\lambda g({\mu _{\alpha }})),{h^{-1}}(\lambda h({\nu _{\alpha }}));{q^{-1}}(\lambda q({r_{\alpha }}))\big\rangle $.
Proposition 3.
Proof.
Example 4.
-
a) $\alpha {\oplus _{q}}\beta =\Big\langle \sqrt{{\mu _{\alpha }^{2}}+{\mu _{\beta }^{2}}-{\mu _{\alpha }^{2}}{\mu _{\beta }^{2}}},{\nu _{\alpha }}{\nu _{\beta }};{r_{\alpha }}{r_{\beta }}\Big\rangle $,
-
b) $\alpha {\oplus _{p}}\beta =\Big\langle \sqrt{{\mu _{\alpha }^{2}}+{\mu _{\beta }^{2}}-{\mu _{\alpha }^{2}}{\mu _{\beta }^{2}}},{\nu _{\alpha }}{\nu _{\beta }};\sqrt{{r_{\alpha }^{2}}+{r_{\beta }^{2}}-{r_{\alpha }^{2}}{r_{\beta }^{2}}}\hspace{0.1667em}\Big\rangle $,
-
c) $\alpha {\otimes _{q}}\beta =\Big\langle {\mu _{\alpha }}{\mu _{\beta }},\sqrt{{\nu _{\alpha }^{2}}+{\nu _{\beta }^{2}}-{\nu _{\alpha }^{2}}{\nu _{\beta }^{2}}};{r_{\alpha }}{r_{\beta }}\Big\rangle $,
-
d) $\alpha {\otimes _{p}}\beta =\Big\langle {\mu _{\alpha }}{\mu _{\beta }},\sqrt{{\nu _{\alpha }^{2}}+{\nu _{\beta }^{2}}-{\nu _{\alpha }^{2}}{\nu _{\beta }^{2}}};\sqrt{{r_{\alpha }^{2}}+{r_{\beta }^{2}}-{r_{\alpha }^{2}}{r_{\beta }^{2}}}\hspace{0.1667em}\Big\rangle $,
-
e) ${\lambda _{q}}\alpha =\Big\langle \sqrt{1-{(1-{\mu _{\alpha }^{2}})^{\lambda }}},{\nu _{\alpha }^{\lambda }};{r_{\alpha }^{\lambda }}\hspace{0.1667em}\Big\rangle $,
-
f) ${\lambda _{p}}\alpha =\Big\langle \sqrt{1-{(1-{\mu _{\alpha }^{2}})^{\lambda }}},{\nu _{\alpha }^{\lambda }};\sqrt{1-{(1-{r_{\alpha }^{2}})^{\lambda }}}\hspace{0.1667em}\Big\rangle $,
-
g) ${\alpha ^{{\lambda _{q}}}}=\Big\langle {\mu _{\alpha }^{\lambda }},\sqrt{1-{(1-{\nu _{\alpha }^{2}})^{\lambda }}};{r_{\alpha }^{\lambda }}\Big\rangle $,
-
h) ${\alpha ^{{\lambda _{p}}}}=\Big\langle {\mu _{\alpha }^{\lambda }},\sqrt{1-{(1-{\nu _{\alpha }^{2}})^{\lambda }}};\sqrt{1-{(1-{r_{\alpha }^{2}})^{\lambda }}}\hspace{0.1667em}\Big\rangle $.
Theorem 3.
-
i) $\alpha {\oplus _{q}}\beta =\beta {\oplus _{q}}\alpha $,
-
ii) $\alpha {\otimes _{q}}\beta =\beta {\otimes _{q}}\alpha $,
-
iii) $(\alpha {\oplus _{q}}\beta ){\oplus _{q}}\theta =\alpha {\oplus _{q}}(\beta {\oplus _{q}}\theta )$,
-
iv) $(\alpha {\otimes _{q}}\beta ){\otimes _{q}}\theta =\alpha {\otimes _{q}}(\beta {\otimes _{q}}\theta )$,
-
v) ${\lambda _{q}}(\alpha {\oplus _{q}}\beta )={\lambda _{q}}\alpha {\oplus _{q}}{\lambda _{q}}\beta $,
-
vi) $({\lambda _{q}}+{\gamma _{q}})\alpha ={\lambda _{q}}\alpha {\oplus _{q}}{\gamma _{q}}\alpha $,
-
vii) ${(\alpha {\otimes _{q}}\beta )^{{\lambda _{q}}}}={\alpha ^{{\lambda _{q}}}}{\otimes _{q}}{\beta ^{{\lambda _{q}}}}$,
-
viii) ${\alpha ^{{\lambda _{q}}}}{\otimes _{q}}{\alpha ^{{\gamma _{q}}}}={\alpha ^{{\lambda _{q}}+{\gamma _{q}}}}$.
Proof.
-
iii) We obtain\[\begin{aligned}{}& (\alpha {\oplus _{q}}\beta ){\oplus _{q}}\theta \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h({\mu _{\alpha }})+h({\mu _{\beta }})\big),{g^{-1}}\big(g({\nu _{\alpha }})+g({\nu _{\beta }})\big);{q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)\big\rangle {\oplus _{q}}\\ {} & \hspace{2em}\langle {\mu _{\theta }},{\nu _{\theta }};{r_{\theta }}\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}(h\big({h^{-1}}\big(h({\mu _{\alpha }})+h({\mu _{\beta }})\big)+h({\mu _{\theta }})\big),{g^{-1}}(g\big({g^{-1}}\big(g({\nu _{\alpha }})\\ {} & \hspace{2em}+g({\nu _{\beta }})\big)+g({\nu _{\theta }})\big);{q^{-1}}(q\big({q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)+q({r_{\theta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h({\mu _{\alpha }})+h({\mu _{\beta }})+h({\mu _{\theta }})\big),{g^{-1}}\big(g({\nu _{\alpha }})+g({\nu _{\beta }})+g({\nu _{\theta }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})+q({r_{\theta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h({\mu _{\alpha }})+h\big({h^{-1}}\big(h({\mu _{\beta }})+h({\mu _{\theta }})\big)\big)\big),{g^{-1}}\big(g({\nu _{\alpha }})\\ {} & \hspace{2em}+g\big({g^{-1}}\big(g({\nu _{\beta }})+g({\nu _{\theta }})\big)\big)\big);{q^{-1}}\big(q({r_{\alpha }})+q\big({q^{-1}}\big(q({r_{\beta }})+q({r_{\theta }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\langle {\mu _{\alpha }},{\nu _{\alpha }};{r_{\alpha }}\rangle {\oplus _{q}}\big\langle {h^{-1}}\big(h({\mu _{\beta }})+h({\mu _{\theta }})\big),{g^{-1}}\big(g({\nu _{\beta }})+g({\nu _{\theta }})\big);\\ {} & \hspace{1em}{q^{-1}}\big(q({r_{\beta }})+q({r_{\theta }})\big)\big\rangle \\ {} & \hspace{1em}=\alpha {\oplus _{q}}(\beta {\oplus _{q}}\theta ).\end{aligned}\]
-
iv) It is obtained that\[\begin{aligned}{}& (\alpha {\otimes _{q}}\beta ){\otimes _{q}}\theta \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g({\mu _{\alpha }})+g({\mu _{\beta }})\big),{h^{-1}}\big(h({\nu _{\alpha }})+h({\nu _{\beta }})\big);{q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)\big\rangle {\otimes _{q}}\\ {} & \hspace{2em}\langle {\mu _{\theta }},{\nu _{\theta }};{r_{\theta }}\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}(g\big({g^{-1}}\big(g({\mu _{\alpha }})+g({\mu _{\beta }})\big)+g({\mu _{\theta }})\big),{h^{-1}}(h\big({h^{-1}}\big(h({\nu _{\alpha }})+h({\nu _{\beta }})\big)\\ {} & \hspace{2em}+h({\nu _{\theta }})\big);{q^{-1}}(q\big({q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)+q({r_{\theta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g({\mu _{\alpha }})+g({\mu _{\beta }})+g({\mu _{\theta }})\big),{h^{-1}}\big(h({\nu _{\alpha }})+h({\nu _{\beta }})+h({\nu _{\theta }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})+q({r_{\theta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g({\mu _{\alpha }})+g\big({g^{-1}}\big(g({\mu _{\beta }})+g({\mu _{\theta }})\big)\big)\big),{h^{-1}}\big(h({\nu _{\alpha }})\\ {} & \hspace{2em}+h\big({h^{-1}}\big(h({\nu _{\beta }})+h({\nu _{\theta }})\big)\big)\big);{q^{-1}}\big(q({r_{\alpha }})+q\big({q^{-1}}\big(q({r_{\beta }})+q({r_{\theta }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\langle {\mu _{\alpha }},{\nu _{\alpha }};{r_{\alpha }}\rangle {\otimes _{q}}\big\langle {g^{-1}}\big(g({\mu _{\beta }})+g({\mu _{\theta }})\big),{h^{-1}}\big(h({\nu _{\beta }})+h({\nu _{\theta }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(q({r_{\beta }})+q({r_{\theta }})\big)\big\rangle \\ {} & \hspace{1em}=\alpha {\otimes _{q}}(\beta {\otimes _{q}}\theta ).\end{aligned}\]
-
v) We get\[\begin{aligned}{}& {\lambda _{q}}(\alpha {\oplus _{q}}\beta )\\ {} & \hspace{1em}={\lambda _{q}}\big\langle {h^{-1}}\big(h({\mu _{\alpha }})+h({\mu _{\beta }})\big),{g^{-1}}\big(g({\nu _{\alpha }})+g({\nu _{\beta }})\big);{q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(\lambda h\big({h^{-1}}\big(h({\mu _{\alpha }})+h({\mu _{\beta }})\big)\big)\big),{g^{-1}}\big(\lambda g\big({g^{-1}}\big(g({\nu _{\alpha }})+g({\nu _{\beta }})\big)\big)\big);\\ {} & \hspace{2em}{q^{-1}}\big(\lambda q\big({q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(\lambda h({\mu _{\alpha }})+\lambda h({\mu _{\beta }})\big),{g^{-1}}\big(\lambda g({\nu _{\alpha }})+\lambda g({\nu _{\beta }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(\lambda q({r_{\alpha }})+\lambda q({r_{\beta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h\big({h^{-1}}\big(\lambda h({\mu _{\alpha }})\big)\big)+h\big({h^{-1}}\big(\lambda h({\mu _{\beta }})\big)\big)\big),{g^{-1}}(g\big({g^{-1}}\big(\lambda g({\nu _{\alpha }})\big)\\ {} & \hspace{2em}+g\big({g^{-1}}\big(\lambda g({\nu _{\beta }})\big)\big)\big);{q^{-1}}\big(q\big({q^{-1}}\big(\lambda q({r_{\alpha }})\big)\big)+q\big({q^{-1}}\big(\lambda q({r_{\beta }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h({\mu _{\lambda \alpha }})+h({\mu _{\lambda \beta }})\big),{g^{-1}}\big(g({\nu _{\lambda \alpha }})+g({\nu _{\lambda \beta }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(q({r_{\lambda \alpha }})+\lambda q({s_{\lambda \beta }})\big)\big\rangle \\ {} & \hspace{1em}={\lambda _{q}}\alpha {\oplus _{q}}{\lambda _{q}}\beta .\end{aligned}\]
-
vi) It is clear that\[\begin{aligned}{}& ({\lambda _{q}}+{\gamma _{q}})\alpha \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big((\lambda +\gamma )h({\mu _{\alpha }})\big),{g^{-1}}\big((\lambda +\gamma )g({\nu _{\alpha }})\big);{q^{-1}}\big((\lambda +\gamma )q({r_{\alpha }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(\lambda h({\mu _{\alpha }})+\gamma h({\mu _{\alpha }})\big),{g^{-1}}\big(\lambda g({\nu _{\alpha }})+\gamma g({\nu _{\alpha }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(\lambda q({r_{\alpha }})+\gamma q({r_{\alpha }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h\big({h^{-1}}\big(\lambda h({\mu _{\alpha }})\big)\big)+h\big({h^{-1}}\big(\gamma h({\mu _{\alpha }})\big)\big)\big),{g^{-1}}\big(g\big({g^{-1}}\big(\lambda g({\nu _{\alpha }})\big)\big)\\ {} & \hspace{2em}+g\big({g^{-1}}\big(\gamma g({\nu _{\alpha }})\big)\big)\big);{q^{-1}}\big(q\big({q^{-1}}\big(\lambda q({r_{\alpha }})\big)\big)+q\big({q^{-1}}\big(\gamma q({r_{\alpha }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {h^{-1}}\big(h({\mu _{{\lambda _{q}}\alpha }})+h({\mu _{{\gamma _{q}}\alpha }})\big),{g^{-1}}\big(g({\nu _{{\lambda _{q}}\alpha }})+g({\nu _{{\gamma _{q}}\alpha }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(q({r_{{\lambda _{q}}\alpha }})+q({r_{{\gamma _{q}}\alpha }})\big)\big\rangle \\ {} & \hspace{1em}={\lambda _{q}}\alpha {\oplus _{q}}{\gamma _{q}}\alpha .\end{aligned}\]
-
vii) We have\[\begin{aligned}{}& {(\alpha {\otimes _{q}}\beta )^{{\lambda _{q}}}}\\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(\lambda g({\mu _{\alpha {\otimes _{q}}\beta }})\big),{h^{-1}}\big(\lambda h({\nu _{\alpha {\otimes _{q}}\beta }})\big);{q^{-1}}\big(\lambda q({r_{\alpha {\otimes _{q}}\beta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(\lambda g\big({g^{-1}}\big(g({\mu _{\alpha }})+g({\mu _{\beta }})\big)\big)\big),{h^{-1}}\big(\lambda h\big({h^{-1}}\big(h({\nu _{\alpha }})+h({\nu _{\beta }})\big)\big)\big);\\ {} & \hspace{2em}{q^{-1}}\big(\lambda q\big({q^{-1}}\big(q({r_{\alpha }})+q({r_{\beta }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(\lambda g({\mu _{\alpha }})+\lambda g({\mu _{\beta }})\big),{h^{-1}}\big(\lambda h({\nu _{\alpha }})+\lambda h({\nu _{\beta }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(\lambda q({r_{\alpha }})+\lambda q({r_{\beta }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g\big({g^{-1}}\big(\lambda g({\mu _{\alpha }})\big)\big)+g\big({g^{-1}}\big(\lambda g({\mu _{\beta }})\big)\big)\big),{h^{-1}}(h\big({h^{-1}}\big(\lambda h({\nu _{\alpha }})\big)\big)\\ {} & \hspace{2em}+h\big({h^{-1}}\big(\lambda h({\nu _{\beta }})\big)\big);{q^{-1}}(q\big({q^{-1}}\big(\lambda q({r_{\alpha }})\big)\big)+q\big({q^{-1}}\big(\lambda q({r_{\beta }})\big)\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g({\mu _{{\alpha ^{{\lambda _{q}}}}}})+g({\mu _{{\beta ^{{\lambda _{q}}}}}})\big),{h^{-1}}\big(h({\nu _{{\alpha ^{{\lambda _{q}}}}}})+h({\nu _{{\beta ^{{\lambda _{q}}}}}})\big);\\ {} & \hspace{2em}{q^{-1}}(q({r_{{\alpha ^{{\lambda _{q}}}}}})+q({r_{{\beta ^{{\lambda _{q}}}}}})\big\rangle \\ {} & \hspace{1em}={\alpha ^{{\lambda _{q}}}}{\otimes _{q}}{\beta ^{{\lambda _{q}}}}.\end{aligned}\]
-
viii) We have\[\begin{aligned}{}& {\alpha _{r}^{{\lambda _{q}}+{\gamma _{q}}}}\\ {} & \hspace{1em}=\big\langle {g^{-1}}\big((\lambda +\gamma )g({\mu _{\alpha }})\big),{h^{-1}}\big((\lambda +\gamma )h({\nu _{\alpha }})\big);{q^{-1}}\big((\lambda +\gamma )q({r_{\alpha }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(\lambda g({\mu _{\alpha }})+\gamma g({\mu _{\alpha }})\big),{h^{-1}}\big(\lambda h({\nu _{\alpha }})+\gamma h({\nu _{\alpha }})\big);\\ {} & \hspace{2em}{q^{-1}}\big(\lambda q({r_{\alpha }})+\gamma q({r_{\alpha }})\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g\big({g^{-1}}\big(\lambda g({\mu _{\alpha }})\big)\big)+g\big({g^{-1}}\big(\gamma g({\mu _{\alpha }})\big)\big)\big),{h^{-1}}\big(h\big({h^{-1}}\big(\lambda h({\nu _{\alpha }})\big)\big)\\ {} & \hspace{2em}+h\big({h^{-1}}\big(\gamma h({\nu _{\alpha }})\big)\big)\big);{q^{-1}}\big(q\big({q^{-1}}\big(\lambda q({r_{\alpha }})\big)\big)+q\big({q^{-1}}\big(\gamma q({r_{\alpha }})\big)\big)\big)\big\rangle \\ {} & \hspace{1em}=\big\langle {g^{-1}}\big(g({\mu _{{\alpha ^{\lambda }}}})+g({\mu _{{\alpha ^{\gamma }}}})\big),{h^{-1}}\big(h({\nu _{{\alpha ^{\lambda }}}})+h({\nu _{{\alpha ^{\gamma }}}})\big);{q^{-1}}\big(q({r_{{\alpha ^{\lambda }}}})+q({r_{{\alpha ^{\gamma }}}})\big)\big\rangle \\ {} & \hspace{1em}={\alpha _{r}^{{\lambda _{q}}}}{\otimes _{q}}{\alpha _{r}^{{\gamma _{q}}}}.\end{aligned}\]
4 Aggregation Operators for C-PFVs
4.1 Weighted Arithmetic Aggregation Operators
Definition 15.
Theorem 4.
Proof.
Remark 4.
4.2 Weighted Geometric Aggregation Operators
Definition 16.
Theorem 5.
Remark 5.
5 An Application of C-PFVs to an MCDM Problem
5.1 A Similarity Measure for C-PFVs
Definition 17.
Theorem 6.
Proof.
5.2 An MCDM Method
5.3 Evaluation of the Problem of Selecting Photovoltaic Cells
-
${\boldsymbol{A}_{1}}$: Photovoltaic cells with crystalline silicon (mono-crystalline and poly-crystalline),
-
${\boldsymbol{A}_{2}}$: Photovoltaic cells with inorganic thin layer (amorphous silicon),
-
${\boldsymbol{A}_{3}}$: Photovoltaic cells with inorganic thin layer (cadmium telluride/cadmium sulfide and copper indium gallium diselenide/cadmium sulfide),
-
${\boldsymbol{A}_{4}}$: Photovoltaic cells with advanced III–V thin layer with tracking systems for solar concentration, and
-
${\boldsymbol{A}_{5}}$: Photovoltaic cells with advanced, low cost, thin layers (organic and hybrid cells).
Table 1
Experts | Alternatives | ${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | ${C_{5}}$ |
${E_{1}}$ | ${A_{1}}$ | $\langle 0.8,0.4\rangle $ | $\langle 0.8,0.6\rangle $ | $\langle 0.6,0.7\rangle $ | $\langle 0.8,0.3\rangle $ | $\langle 0.6,0.5\rangle $ |
${A_{2}}$ | $\langle 0.5,0.7\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.5\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.5,0.6\rangle $ | |
${A_{3}}$ | $\langle 0.4,0.3\rangle $ | $\langle 0.3,0.7\rangle $ | $\langle 0.7,0.4\rangle $ | $\langle 0.4,0.6\rangle $ | $\langle 0.5,0.4\rangle $ | |
${A_{4}}$ | $\langle 0.6,0.6\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.7,0.2\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.7,0.3\rangle $ | |
${A_{5}}$ | $\langle 0.7,0.5\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.9,0.3\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.7,0.1\rangle $ | |
${E_{2}}$ | ${A_{1}}$ | $\langle 0.9,0.3\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.5,0.8\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.6,0.3\rangle $ |
${A_{2}}$ | $\langle 0.4,0.7\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.1\rangle $ | $\langle 0.5,0.3\rangle $ | $\langle 0.5,0.3\rangle $ | |
${A_{3}}$ | $\langle 0.6,0.3\rangle $ | $\langle 0.7,0.7\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.3,0.4\rangle $ | |
${A_{4}}$ | $\langle 0.8,0.4\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.7,0.4\rangle $ | $\langle 0.7,0.4\rangle $ | |
${A_{5}}$ | $\langle 0.7,0.2\rangle $ | $\langle 0.8,0.2\rangle $ | $\langle 0.8,0.4\rangle $ | $\langle 0.6,0.6\rangle $ | $\langle 0.6,0.6\rangle $ | |
${E_{3}}$ | ${A_{1}}$ | $\langle 0.8,0.6\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.5,0.8\rangle $ | $\langle 0.5,0.5\rangle $ | $\langle 0.6,0.1\rangle $ |
${A_{2}}$ | $\langle 0.5,0.6\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.1\rangle $ | $\langle 0.5,0.3\rangle $ | $\langle 0.4,0.3\rangle $ | |
${A_{3}}$ | $\langle 0.7,0.4\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.6,0.1\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.5,0.6\rangle $ | |
${A_{4}}$ | $\langle 0.9,0.2\rangle $ | $\langle 0.5,0.6\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.6,0.1\rangle $ | $\langle 0.7,0.4\rangle $ | |
${A_{5}}$ | $\langle 0.6,0.1\rangle $ | $\langle 0.8,0.2\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.5,0.6\rangle $ | $\langle 0.6,0.4\rangle $ |
Table 2
Experts | Alternatives | ${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | ${C_{5}}$ |
${E_{1}}$ | ${A_{1}}$ | $\langle 0.4,0.8\rangle $ | $\langle 0.8,0.6\rangle $ | $\langle 0.6,0.7\rangle $ | $\langle 0.3,0.8\rangle $ | $\langle 0.5,0.6\rangle $ |
${A_{2}}$ | $\langle 0.7,0.5\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.5\rangle $ | $\langle 0.3,0.6\rangle $ | $\langle 0.6,0.5\rangle $ | |
${A_{3}}$ | $\langle 0.3,0.4\rangle $ | $\langle 0.3,0.7\rangle $ | $\langle 0.7,0.4\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.4,0.5\rangle $ | |
${A_{4}}$ | $\langle 0.6,0.6\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.7,0.2\rangle $ | $\langle 0.4,0.6\rangle $ | $\langle 0.3,0.7\rangle $ | |
${A_{5}}$ | $\langle 0.5,0.7\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.9,0.3\rangle $ | $\langle 0.6,0.7\rangle $ | $\langle 0.1,0.7\rangle $ | |
${E_{2}}$ | ${A_{1}}$ | $\langle 0.3,0.9\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.5,0.8\rangle $ | $\langle 0.3,0.6\rangle $ | $\langle 0.3,0.6\rangle $ |
${A_{2}}$ | $\langle 0.7,0.4\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.1\rangle $ | $\langle 0.3,0.5\rangle $ | $\langle 0.3,0.5\rangle $ | |
${A_{3}}$ | $\langle 0.3,0.6\rangle $ | $\langle 0.7,0.7\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.4,0.3\rangle $ | |
${A_{4}}$ | $\langle 0.4,0.8\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.4,0.7\rangle $ | $\langle 0.4,0.7\rangle $ | |
${A_{5}}$ | $\langle 0.2,0.7\rangle $ | $\langle 0.8,0.2\rangle $ | $\langle 0.8,0.4\rangle $ | $\langle 0.6,0.6\rangle $ | $\langle 0.6,0.6\rangle $ | |
${E_{3}}$ | ${A_{1}}$ | $\langle 0.6,0.8\rangle $ | $\langle 0.7,0.6\rangle $ | $\langle 0.5,0.8\rangle $ | $\langle 0.5,0.5\rangle $ | $\langle 0.1,0.6\rangle $ |
${A_{2}}$ | $\langle 0.6,0.5\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.1\rangle $ | $\langle 0.3,0.5\rangle $ | $\langle 0.3,0.4\rangle $ | |
${A_{3}}$ | $\langle 0.4,0.7\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.6,0.1\rangle $ | $\langle 0.2,0.9\rangle $ | $\langle 0.6,0.5\rangle $ | |
${A_{4}}$ | $\langle 0.2,0.9\rangle $ | $\langle 0.5,0.6\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.1,0.6\rangle $ | $\langle 0.4,0.7\rangle $ | |
${A_{5}}$ | $\langle 0.1,0.6\rangle $ | $\langle 0.8,0.2\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.6,0.5\rangle $ | $\langle 0.4,0.6\rangle $ |
Table 3
Alternatives | ${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | ${C_{5}}$ |
${A_{1}}$ | $\langle 0.45,0.83\rangle $ | $\langle 0.73,0.6\rangle $ | $\langle 0.54,0.77\rangle $ | $\langle 0.38,0.64\rangle $ | $\langle 0.34,0.6\rangle $ |
${A_{2}}$ | $\langle 0.67,0.47\rangle $ | $\langle 0.9,0.2\rangle $ | $\langle 0.8,0.3\rangle $ | $\langle 0.3,0.54\rangle $ | $\langle 0.42,0.47\rangle $ |
${A_{3}}$ | $\langle 0.34,0.58\rangle $ | $\langle 0.6,0.64\rangle $ | $\langle 0.67,0.42\rangle $ | $\langle 0.43,0.61\rangle $ | $\langle 0.48,0.44\rangle $ |
${A_{4}}$ | $\langle 0.43,0.78\rangle $ | $\langle 0.64,0.54\rangle $ | $\langle 0.63,0.2\rangle $ | $\langle 0.33,0.64\rangle $ | $\langle 0.37,0.7\rangle $ |
${A_{5}}$ | $\langle 0.32,0.67\rangle $ | $\langle 0.74,0.28\rangle $ | $\langle 0.87,0.31\rangle $ | $\langle 0.6,0.6\rangle $ | $\langle 0.42,0.64\rangle $ |
Table 4
Alternatives | ${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | ${C_{5}}$ |
${A_{1}}$ | 0.16 | 0.07 | 0.09 | 0.19 | 0.24 |
${A_{2}}$ | 0.08 | 0.0 | 0.2 | 0.06 | 0.18 |
${A_{3}}$ | 0.18 | 0.3 | 0.33 | 0.37 | 0.16 |
${A_{4}}$ | 0.26 | 0.15 | 0.07 | 0.23 | 0.07 |
${A_{5}}$ | 0.23 | 0.18 | 0.12 | 0.1 | 0.32 |
Table 5
${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | ${C_{5}}$ | |
${A_{1}}$ | $\langle 0.45,0.83;0.16\rangle $ | $\langle 0.73,0.6;0.07\rangle $ | $\langle 0.54,0.77;0.09\rangle $ | $\langle 0.38,0.64;0.19\rangle $ | $\langle 0.34,0.6;0.24\rangle $ |
${A_{2}}$ | $\langle 0.67,0.47;0.08\rangle $ | $\langle 0.9,0.2;0.0\rangle $ | $\langle 0.8,0.3;0.2\rangle $ | $\langle 0.3,0.54;0.06\rangle $ | $\langle 0.42,0.47;0.18\rangle $ |
${A_{3}}$ | $\langle 0.34,0.58;0.18\rangle $ | $\langle 0.6,0.64;0.3\rangle $ | $\langle 0.67,0.42;0.33\rangle $ | $\langle 0.43,0.61;0.37\rangle $ | $\langle 0.48,0.44;0.16\rangle $ |
${A_{4}}$ | $\langle 0.43,0.78;0.26\rangle $ | $\langle 0.64,0.54;0.15\rangle $ | $\langle 0.63,0.2;0.07\rangle $ | $\langle 0.33,0.64;0.23\rangle $ | $\langle 0.37,0.7;0.07\rangle $ |
${A_{5}}$ | $\langle 0.32,0.67;0.23\rangle $ | $\langle 0.74,0.28;0.18\rangle $ | $\langle 0.87,0.31;0.12\rangle $ | $\langle 0.6,0.6;0.1\rangle $ | $\langle 0.42,0.64;0.32\rangle $ |
Table 6
Alternatives | ${\textit{CPWA}_{q}^{A}}$ | ${\textit{CPWA}_{p}^{A}}$ | ${\textit{CPWG}_{q}^{A}}$ | ${\textit{CPWG}_{P}^{A}}$ |
${A_{1}}$ | $\langle 0.59,0.66;0.11\rangle $ | $\langle 0.59,0.66;0.13\rangle $ | $\langle 0.52,0.69;0.11\rangle $ | $\langle 0.52,0.69;0.13\rangle $ |
${A_{2}}$ | $\langle 0.78,0.32;0.0\rangle $ | $\langle 0.78,0.32;0.11\rangle $ | $\langle 0.65,0.38;0.0\rangle $ | $\langle 0.65,0.38;0.11\rangle $ |
${A_{3}}$ | $\langle 0.53,0.55;0.25\rangle $ | $\langle 0.53,0.55;0.27\rangle $ | $\langle 0.5,0.57;0.25\rangle $ | $\langle 0.5,0.57;0.27\rangle $ |
${A_{4}}$ | $\langle 0.54,0.56;0.14\rangle $ | $\langle 0.54,0.56;0.17\rangle $ | $\langle 0.49,0.63;0.14\rangle $ | $\langle 0.49,0.63;0.17\rangle $ |
${A_{5}}$ | $\langle 0.66,0.43;0.18\rangle $ | $\langle 0.66,0.43;0.22\rangle $ | $\langle 0.56,0.52;0.18\rangle $ | $\langle 0.56,0.52;0.22\rangle $ |
Table 7
$\textit{CSM}({A_{1}},{A^{+}})$ | $\textit{CSM}({A_{2}},{A^{+}})$ | $\textit{CSM}({A_{3}},{A^{+}})$ | $\textit{CSM}({A_{4}},{A^{+}})$ | $\textit{CSM}({A_{5}},{A^{+}})$ | |
${\textit{CPWA}_{q}^{A}}$ | 0.325 | 0.493 | 0.465 | 0.411 | $\mathbf{0.555}$ |
${\textit{CPWA}_{p}^{A}}$ | 0.377 | 0.548 | 0.475 | 0.425 | $\mathbf{0.571}$ |
${\textit{CPWG}_{q}^{A}}$ | 0.301 | $\mathbf{0.473}$ | 0.429 | 0.328 | 0.468 |
${\textit{CPWG}_{P}^{A}}$ | 0.311 | $\mathbf{0.528}$ | 0.439 | 0.343 | 0.488 |
5.4 Comparative Analysis
Table 8
Methods | Ranking order | Best Alternative |
Zhang (2016) | ${A_{1}}\prec {A_{3}}\prec {A_{4}}\prec {A_{5}}\prec {A_{2}}$ | ${A_{2}}$ |
Biswas and Sarkar (2018) | ${A_{1}}\prec {A_{4}}\prec {A_{3}}\prec {A_{5}}\prec {A_{2}}$ | ${A_{2}}$ |
Biswas and Sarkar (2019) | ${A_{1}}\prec {A_{3}}\prec {A_{4}}\prec {A_{5}}\prec {A_{2}}$ | ${A_{2}}$ |
Proposed Method (${\textit{CPWA}_{q}^{A}}$) | ${A_{1}}\prec {A_{4}}\prec {A_{3}}\prec {A_{2}}\prec {A_{5}}$ | ${A_{5}}$ |
Proposed Method (${\textit{CPWA}_{p}^{A}}$) | ${A_{1}}\prec {A_{4}}\prec {A_{3}}\prec {A_{2}}\prec {A_{5}}$ | ${A_{5}}$ |
Proposed Method (${\textit{CPWG}_{q}^{A}}$) | ${A_{1}}\prec {A_{4}}\prec {A_{3}}\prec {A_{5}}\prec {A_{2}}$ | ${A_{2}}$ |
Proposed Method (${\textit{CPWG}_{p}^{A}}$) | ${A_{1}}\prec {A_{4}}\prec {A_{3}}\prec {A_{5}}\prec {A_{2}}$ | ${A_{2}}$ |