Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 34, Issue 3 (2023)
  4. Fog Computing in Healthcare: Systematic ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Fog Computing in Healthcare: Systematic Review
Volume 34, Issue 3 (2023), pp. 577–602
Dalius Navakauskas ORCID icon link to view author Dalius Navakauskas details   Mantas Kazlauskas ORCID icon link to view author Mantas Kazlauskas details  

Authors

 
Placeholder
https://doi.org/10.15388/23-INFOR525
Pub. online: 15 September 2023      Type: Research Article      Open accessOpen Access

Received
1 January 2023
Accepted
1 August 2023
Published
15 September 2023

Abstract

Healthcare has seen many advances in sensor technology, but with recent improvements in networks and the addition of the Internet of Things, it is even more promising. Current solutions to managing healthcare data with cloud computing may be unreliable at the most critical moments. High response latency, large volumes of data, and security are the main issues of this approach. The promising solution is fog computing, which offers an immediate response resistant to disconnections and ways to process big data using real-time analytics and artificial intelligence (AI). However, fog computing has not yet matured and there are still many challenges. This article presents for a computer scientist a systematic review of the literature on fog computing in healthcare. Articles published in six years are analysed from the service, software, hardware, information technologies and mobility with autonomy perspectives. The contribution of this study includes an analysis of recent trends, focus areas and benefits of the use of AI techniques in fog computing e-health applications.

References

 
Aazam, M., Zeadally, S., Harras, K.A. (2020). Health fog for smart healthcare. IEEE Consumer Electronics Magazine, 9(2), 96–102. https://doi.org/10.1109/mce.2019.2953749.
 
Aceto, G., Persico, V., Pescapé, A. (2020). Industry 4.0 and health: internet of things, big data, and cloud computing for Healthcare 4.0. Journal of Industrial Information Integration, 18. https://doi.org/10.1016/j.jii.2020.100129.
 
Ahanger, T.A., Bhatia, M., Aljumah, A. (2022). Game-theory-inspired novel mechanism for assessing healthcare quality. IEEE Internet of Things Journal, 9(24), 24856–24865. https://doi.org/10.1109/jiot.2022.3194854.
 
Ahmad, S., Afzal, M.M., ALharbi, A. (2020). Big data analytics with fog computing in integrated cloud fog and IoT architecture for smart devices. International Journal of Computer Science and Network Security, 20(6), 171–177.
 
Ahmad, S.G., Iqbal, T., Javaid, A., Munir, E.U., Kirn, N., Jan, S.U., Ramzan, N. (2022). Sensing and artificial intelligent maternal-infant health care systems: a review. Sensors, 22(12), 4362. https://doi.org/10.3390/s22124362.
 
Ahmadi, Z., Kashani, M.H., Nikravan, M., Mahdipour, E. (2021). Fog-based healthcare systems: a systematic review. Multimedia Tools and Applications, 80(30), 36361–36400. https://doi.org/10.1007/s11042-021-11227-x.
 
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095.
 
Al-Jaroodi, J., Mohamed, N., Abukhousa, E. (2020). Health 4.0: on the way to realizing the healthcare of the future. IEEE Access, 8, 211189–211210. https://doi.org/10.1109/access.2020.3038858.
 
Alabdulkreem, E., Alzahrani, J.S., Eltahir, M.M., Mohamed, A., Hamza, M.A., Motwakel, A., Eldesouki, M.I., Rizwanullah, M. (2022). Cuckoo optimized convolution support vector machine for big health data processing. Computers, Materials & Continua, 73(2), 3039–3055. https://doi.org/10.32604/cmc.2022.029835.
 
Albeshri, A. (2021). SVSL: a human activity recognition method using soft-voting and self-learning. Algorithms, 14(8), 245. https://doi.org/10.3390/a14080245.
 
Aldaej, A. (2022). IoT-inspired smart healthcare framework for diabetic patients: fog computing initiative. International Journal of Innovative Computing Information and Control, 18(3), 917–939. https://doi.org/10.24507/ijicic.18.03.917.
 
Alekseeva, D., Ometov, A., Arponen, O., Lohan, E.S. (2022). The future of computing paradigms for medical and emergency applications. Computer Science Review, 45, 100494. https://doi.org/10.1016/j.cosrev.2022.100494.
 
Ali, O., Ishak, M.K., Bhatti, M.K.L., Khan, I., Kim, K.-I. (2022). A comprehensive review of Internet of Things: technology stack, middlewares, and fog/edge computing interface. Sensors, 22(3), 995. https://doi.org/10.3390/s22030995.
 
Alkhateeb, A., Catal, C., Kar, G., Mishra, A. (2022). Hybrid blockchain platforms for the Internet of Things (IoT): a systematic literature review. Sensors, 22(4), 1304. https://doi.org/10.3390/s22041304.
 
Alshehri, F., Muhammad, G. (2021). A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access, 9, 3660–3678. https://doi.org/10.1109/access.2020.3047960.
 
Amin, S.U., Hossain, M.S. (2021). Edge intelligence and Internet of Things in healthcare: a survey. IEEE Access, 9, 45–59. https://doi.org/10.1109/access.2020.3045115.
 
Arora, D., Gupta, S., Anpalagan, A. (2022). Evolution and adoption of next generation IoT-driven health care 4.0 systems. Wireless Personal Communications, 127(4), 3533–3613. https://doi.org/10.1007/s11277-022-09932-3.
 
Babar, M., Khan, M.S., Ali, F., Imran, M., Shoaib, M. (2021). Cloudlet computing: recent advances, taxonomy, and challenges. IEEE Access, 9, 29609–29622. https://doi.org/10.1109/access.2021.3059072.
 
Badidi, E., Mahrez, Z., Sabir, E. (2020). Fog computing for smart cities’ big data management and analytics: a review. Future Internet, 12(11), 190. https://doi.org/10.3390/fi12110190.
 
Bagula, A., Mandava, M., Bagula, H. (2018). A framework for healthcare support in the rural and low income areas of the developing world. Journal of Network and Computer Applications, 120, 17–29. https://doi.org/10.1016/j.jnca.2018.06.010.
 
Bansal, S., Kumar, D. (2020). IoT ecosystem: a survey on devices, gateways, operating systems, middleware and communication. International Journal of Wireless Information Networks, 27(3), 340–364. https://doi.org/10.1007/s10776-020-00483-7.
 
Behmanesh, A., Sayfouri, N., Sadoughi, F. (2020). Technological features of Internet of Things in medicine: a systematic mapping study. Wireless Communications and Mobile Computing, 2020, 1–27. https://doi.org/10.1155/2020/9238614.
 
Bhatia, M. (2020). Fog computing-inspired smart home framework for predictive veterinary healthcare. Microprocessors and Microsystems, 78, 103227. https://doi.org/10.1016/j.micpro.2020.103227.
 
Bhatia, M., Kumari, S. (2022). A novel IoT-fog-cloud-based healthcare system for monitoring and reventing encephalitis. Cognitive Computation. 14, 1609–1626. https://doi.org/10.1007/s12559-021-09856-3.
 
Bhatia, M., Sood, S.K. (2019). Exploring temporal analytics in fog-cloud architecture for smart office healthcare. Mobile Networks and Applications, 24(4), 1392–1410. https://doi.org/10.1007/s11036-018-0991-5.
 
Bhatia, M., Ahanger, T.A., Tariq, U., Ibrahim, A. (2021). Cognitive intelligence in fog computing-inspired veterinary healthcare. Computers & Electrical Engineering, 91, 107061. https://doi.org/10.1016/j.compeleceng.2021.107061.
 
Bonomi, F. (2011). Connected vehicles, the Internet of Things, and fog computing. In: The Eighth ACM International Workshop on Vehicular Inter-networking (VANET), Las Vegas, USA, pp. 13–15.
 
Bonomi, F., Milito, R., Zhu, J., Addepalli, S. (2012). Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. Association for Computing Machinery, New York, USA, pp. 13–16. 978-1-4503-1519-7. https://doi.org/10.1145/2342509.2342513.
 
Busaeed, S., Katib, I., Albeshri, A., Corchado, J.M., Yigitcanlar, T., Mehmood, R. (2022). LidSonic V2.0: a LiDAR and deep-learning-based green assistive edge device to enhance mobility for the visually impaired. Sensors, 22(19), 7435. https://doi.org/10.3390/s22197435.
 
Chakraborty, C., Kishor, A. (2022). Real-time cloud-based patient-centric monitoring using computational health systems. IEEE Transactions on Computational Social Systems, 9(6), 1613–1623. https://doi.org/10.1109/tcss.2022.3170375.
 
Chamola, V., Hassija, V., Gupta, V., Guizani, M. (2020). A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. IEEE Access, 8, 90225–90265. https://doi.org/10.1109/access.2020.2992341.
 
Chaudjary, S., Kakkar, R., Gupta, R., Tanwar, S., Agrawal, S., Sharma, R. (2022). Blockchain and federated learning-based security solutions for telesurgery system: a comprehensive review. Turkish Journal of Electrical Engineering and Computer Sciences, 30(7), 2446–2488. https://doi.org/10.55730/1300-0632.3950.
 
de Moura Costa, H.J., da Costa, C.A., da Rosa Righi, R., Antunes, R.S. (2020). Fog computing in health: a systematic literature review. Health and Technology, 10(5), 1025–1044. https://doi.org/10.1007/s12553-020-00431-8.
 
de Prado, R.P., García-Galán, S., Muñoz-Expósito, J.E., Marchewka, A., Ruiz-Reyes, N. (2020). Smart containers schedulers for microservices provision in cloud-fog-IoT networks. Challenges and opportunities. Sensors, 20(6). https://doi.org/10.3390/s20061714.
 
Dhaou, I.B., Ebrahimi, M., Ammar, M.B., Bouattour, G., Kanoun, O. (2021). Edge devices for internet of medical things: technologies, techniques, and implementation. Electronics, 10(17), 2104. https://doi.org/10.3390/electronics10172104.
 
Doghri, W., Saddoud, A., Fourati, L.C. (2022). Cyber-physical systems for structural health monitoring: sensing technologies and intelligent computing. The Journal of Supercomputing, 78(1), 766–809. https://doi.org/10.1007/s11227-021-03875-5.
 
Douch, S., Abid, M.R., Zine-Dine, K., Bouzidi, D., Benhaddou, D. (2022). Edge computing technology enablers: a systematic lecture study. IEEE Access, 10, 69264–69302. https://doi.org/10.1109/access.2022.3183634.
 
El-Hasnony, I.M., Mostafa, R.R., Elhoseny, M., Barakat, S.I. (2020). Leveraging mist and fog for big data analytics in IoT environment. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.4057.
 
Engelbrecht, A.P. (2007). Computational Intelligence: An Introduction. 2nd edition, Wiley, West Sussex, UK, pp. 640. 978-0-470-03561-0.
 
Erhan, L., Ndubuaku, M., Mauro, M.D., Song, W., Chen, M., Fortino, G., Bagdasar, O., Liotta, A. (2021). Smart anomaly detection in sensor systems: a multi-perspective review. Information Fusion, 67, 64–79. https://doi.org/10.1016/j.inffus.2020.10.001.
 
Farahani, B., Barzegari, M., Aliee, F.S., Shaik, K.A. (2020). Towards collaborative intelligent IoT eHealth: from device to fog, and cloud. Microprocessors and Microsystems, 72. https://doi.org/10.1016/j.micpro.2019.102938.
 
Fu, C., Lv, Q., Badrnejad, R.G. (2020). Fog computing in health management processing systems. Kybernetes, 49(12), 2893–2917. https://doi.org/10.1108/k-09-2019-0621.
 
Ghosh, S., Mukherjee, A., Ghosh, S.K., Buyya, R. (2022). STOPPAGE: spatio-temporal data driven cloud-fog-edge computing framework for pandemic monitoring and management. Software: Practice and Experience, 52(12), 2700–2726. https://doi.org/10.1002/spe.3144.
 
Gopal, G., Suter-Crazzolara, C., Toldo, L., Eberhardt, W. (2019). Digital transformation in healthcare – architectures of present and future information technologies. Clinical Chemistry and Laboratory Medicine (CCLM), 57(3), 328–335. https://doi.org/doi:10.1515/cclm-2018-0658.
 
Greco, L., Percannella, G., Ritrovato, P., Tortorella, F., Vento, M. (2020). Trends in IoT based solutions for health care: moving AI to the edge. Pattern Recognition Letters, 135, 346–353. https://doi.org/10.1016/j.patrec.2020.05.016.
 
Gu, F., Niu, J., Jin, X., Yu, S. (2020). FDFA: a fog computing assisted distributed analytics and detecting system for family activities. Peer-to-Peer Networking and Applications, 13(1), 38–52. https://doi.org/10.1007/s12083-018-0714-5.
 
Gupta, A., Singh, A. (2022). An intelligent healthcare cyber physical framework for encephalitis diagnosis based on information fusion and soft-computing techniques. New Generation Computing, 40(4), 1093–1123. https://doi.org/10.1007/s00354-022-00175-1.
 
Hajam, S.S., Sofi, S.A. (2021). IoT-Fog architectures in smart city applications: a survey. China Communications, 18(11), 117–140. https://doi.org/10.23919/jcc.2021.11.009.
 
Hayyolalam, V., Aloqaily, M., Ozkasap, O., Guizani, M. (2022). Edge-assisted solutions for IoT-based connected healthcare systems: a literature review. IEEE Internet of Things Journal, 9(12), 9419–9443. https://doi.org/10.1109/jiot.2021.3135200.
 
Ijaz, M., Li, G., Wang, H., El-Sherbeeny, A.M., Awelisah, Y.M., Lin, L., Koubaa, A., Noor, A. (2020). Intelligent fog-enabled smart healthcare system for wearable physiological parameter detection. Electronics, 9(12), 2015. https://doi.org/10.3390/electronics9122015.
 
Javadzadeh, G., Rahmani, A.M. (2020). Fog computing applications in smart cities: a systematic survey. Wireless Networks, 26(2), 1433–1457. https://doi.org/10.1007/s11276-019-02208-y.
 
Javaid, S., Zeadally, S., Fahim, H., He, B. (2022). Medical sensors and their integration in wireless body area networks for pervasive healthcare delivery: a review. IEEE Sensors Journal, 22(5), 3860–3877. https://doi.org/10.1109/jsen.2022.3141064.
 
Kamruzzaman, M.M., Alanazi, S., Alruwaili, M., Alrashdi, I., Alhwaiti, Y., Alshammari, N. (2022). Fuzzy-assisted machine learning framework for the fog-computing system in remote healthcare monitoring. Measurement, 195, 111085. https://doi.org/10.1016/j.measurement.2022.111085.
 
Kanani, P., Padole, M. (2020). Exploring and optimizing the fog computing in different dimensions. Procedia Computer Science, 171, 2694–2703. https://doi.org/10.1016/j.procs.2020.04.292.
 
Kashani, M.H., Madanipour, M., Nikravan, M., Asghari, P., Mahdipour, E. (2021). A systematic seview of IoT in healthcare: applications, techniques, and trends. Journal of Network and Computer Applications, 192, 103164. https://doi.org/10.1016/j.jnca.2021.103164.
 
Kashyap, V., Kumar, A., Kumar, A., Hu, Y.-C. (2022). A systematic survey on fog and IoT driven healthcare: open challenges and research issues. Electronics, 11(17), 2668. https://doi.org/10.3390/electronics11172668.
 
Kaur, J., Agrawal, A., Khan, R.A. (2020a). Security issues in fog environment: a systematic literature review. International Journal of Wireless Information Networks, 27(3), 467–483. https://doi.org/10.1007/s10776-020-00491-7.
 
Kaur, R., Pasricha, R., Kaur, B. (2020b). A study of wireless body area networks and its routing protocols for healthcare environment. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 13(2), 136–152. https://doi.org/10.2174/2352096512666190305152857.
 
Khan, J.I., Khan, J., Ali, F., Ullah, F., Bacha, J., Lee, S. (2022a). Artificial Intelligence and Internet of Things (AI-IoT) technologies in response to COVID-19 pandemic: a systematic review. IEEE Access, 10, 62613–62660. https://doi.org/10.1109/access.2022.3181605.
 
Khan, M.A., Din, I.U., Majali, T., Kim, B.-S. (2022b). A survey of authentication in Internet of Things-enabled healthcare systems. Sensors, 22(23), 9089. https://doi.org/10.3390/s22239089.
 
Khan, M.N., Rao, A., Camtepe, S. (2021). Lightweight cryptographic protocols for IoT-constrained devices: a survey. IEEE Internet of Things Journal, 8(6), 4132–4156. https://doi.org/10.1109/jiot.2020.3026493.
 
Khan, S., Arslan, T., Ratnarajah, T. (2022c). Digital twin perspective of fourth industrial and healthcare revolution. IEEE Access, 10, 25732–25754. https://doi.org/10.1109/access.2022.3156062.
 
Krishnamoorthy, S., Dua, A., Gupta, S. (2023). Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: a survey, current challenges and future directions. Journal of Ambient Intelligence and Humanized Computing. 14, 361–407. https://doi.org/10.1007/s12652-021-03302-w.
 
Kumar, P., Gupta, G.P., Tripathi, R. (2021). An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. Computer Communications, 166, 110–124. https://doi.org/10.1016/j.comcom.2020.12.003.
 
Kumari, S., Bhatia, M., Stea, G. (2022). Fog-computing based healthcare framework for predicting encephalitis outbreak. Big Data Research, 29, 100330. https://doi.org/10.1016/j.bdr.2022.100330.
 
Linthicum, D.S. (2017). Connecting fog and cloud computing. IEEE Cloud Computing, 4(2), 18–20. https://doi.org/10.1109/MCC.2017.37.
 
Liu, X., Deng, R.H., Yang, Y., Tran, H.N., Zhong, S. (2018). Hybrid privacy-preserving clinical decision support system in fog-cloud computing. Future Generation Computer Systems, 78(2), 825–837. https://doi.org/10.1016/j.future.2017.03.018.
 
Maki, O., Alshaikhli, M., Gunduz, M., Naji, K.K., Abdulwahed, M. (2022). Development of digitalization road map for healthcare facility management. IEEE Access, 10, 14450–14462. https://doi.org/10.1109/access.2022.3146341.
 
Manocha, A. (2022). IoT-assisted irregular environmental event determination for health analysis of pregnant females. Transactions on Emerging Telecommunications Technologies, 33(1). https://doi.org/10.1002/ett.4392.
 
Manocha, A., Singh, R., Bhatia, M. (2020a). Cognitive intelligence assisted fog-cloud architecture for Generalized Anxiety Disorder (GAD) prediction. Journal of Medical Systems, 44(1). https://doi.org/10.1007/s10916-019-1495-y.
 
Manocha, A., Singh, R., Verma, P. (2020b). An internet of things fog-assisted sleep-deprivation prediction framework for spinal cord injury patients. Computer, 53(2), 46–56. https://doi.org/10.1109/mc.2019.2916829.
 
Myoung Lee, G., Um, T.-W., Choi, J.K. (2018). AI as a Microservice (AIMS) over networks. In: 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), Santa Fe, Argentina, pp. 1–7. https://doi.org/10.23919/ITU-WT.2018.8597704.
 
Nagarajan, S.M., Deverajan, G.G., Chatterjee, P., Alnumay, W., Ghosh, U. (2021). Effective task scheduling algorithm with deep learning for Internet of Health Things (IoHT) in sustainable smart cities. Sustainable Cities and Society, 71, 102945. https://doi.org/10.1016/j.scs.2021.102945.
 
Naresh, V.S., Pericherla, S.S., Murty, P.S.R., Reddi, S. (2020). Internet of Things in healthcare: architecture, applications, challenges, and solutions. Computer Systems Science and Engineering, 35(6), 411–421. https://doi.org/10.32604/csse.2020.35.411.
 
Nauman, A., Qadri, Y.A., Amjad, M., Zikria, Y.B., Afzal, M.K., Kim, S.W. (2020). Multimedia Internet of Things: a comprehensive survey. IEEE Access, 8, 8202–8250. https://doi.org/10.1109/access.2020.2964280.
 
Navarro, J., Vidaña-Vila, E., Alsina-Pagès, R., Hervás, M. (2018). Real-time distributed architecture for remote acoustic elderly monitoring in residential-scale ambient assisted living scenarios. Sensors, 18(8), 2492. https://doi.org/10.3390/s18082492.
 
Obaidat, M.A., Obeidat, S., Holst, J., Hayajneh, A.A., Brown, J. (2020). A comprehensive and systematic survey on the Internet of Things: security and privacy challenges, security frameworks, enabling technologies, threats, vulnerabilities and countermeasures. Computers, 9(2), 44. https://doi.org/10.3390/computers9020044.
 
Oh, S.-R., Seo, Y.-D., Lee, E., Kim, Y.-G. (2021). A comprehensive survey on security and privacy for electronic health data. International Journal of Environmental Research and Public Health, 18(18), 9668. https://doi.org/10.3390/ijerph18189668.
 
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71.
 
Peng, D., Sun, L., Zhou, R., Wang, Y. (2022). Study QoS-aware fog computing for disease diagnosis and prognosis. Mobile Networks and Applications. https://doi.org/10.1007/s11036-022-01957-z.
 
Poonia, A., Ghosh, S., Ghosh, A., Nath, S.B., Ghosh, S.K., Buyya, R. (2021). CONFRONT: cloud-fog-dew based monitoring framework for COVID-19 management. Internet of Things, 16, 100459. https://doi.org/10.1016/j.iot.2021.100459.
 
Prabhu, C.S.R., Jan, T., Prasad, M., Varadarajan, V. (2020). Fog analytics – a survey. Malaysian Journal of Computer Science, 140–151. https://doi.org/10.22452/mjcs.sp2020no1.10.
 
QingQingChang, Ahmad, I., Liao, X., Nazir, S. (2021). Evaluation and quality assurance of fog computing-based IoT for health monitoring system. Wireless Communications and Mobile Computing, 2021, 1–12. https://doi.org/10.1155/2021/5599907.
 
Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O. (2020). Edge computing in industrial Internet of Things: architecture, advances and challenges. IEEE Communications Surveys & Tutorials, 22(4), 2462–2488. https://doi.org/10.1109/comst.2020.3009103.
 
Quy, V.K., Hau, N.V., Anh, D.V., Ngoc, L.A. (2022). Smart healthcare IoT applications based on fog computing: architecture, applications and challenges. Complex & Intelligent Systems. 8, 3805–3815. https://doi.org/10.1007/s40747-021-00582-9.
 
Raju, K.B., Dara, S., Vidyarthi, A., Gupta, V.M., Khan, B. (2022). Smart heart disease prediction system with IoT and fog computing sectors enabled by cascaded deep learning model. Computational Intelligence and Neuroscience, 2022, 1–22. https://doi.org/10.1155/2022/1070697.
 
Raoof, S.S., Durai, M.A.S. (2022). A comprehensive review on smart health care: applications, paradigms, and challenges with case studies. Contrast Media & Molecular Imaging, 2022, 1–18. https://doi.org/10.1155/2022/4822235.
 
Rashid, N., Demirel, B.U., Faruque, M.A.A. (2022). AHAR: adaptive CNN for energy-efficient human activity recognition in low-power edge devices. IEEE Internet of Things Journal, 9(15), 13041–13051. https://doi.org/10.1109/jiot.2022.3140465.
 
Ribeiro, O., Gomes, L., Vale, Z. (2022). IoT-based human fall detection system. Electronics, 11(4), 592. https://doi.org/10.3390/electronics11040592.
 
Sadaf, K., Sultana, J. (2020). Intrusion detection based on autoencoder and isolation forest in fog computing. IEEE Access, 8, 167059–167068. https://doi.org/10.1109/access.2020.3022855.
 
Sadri, A.A., Rahmani, A.M., Saberikamarposhti, M., Hosseinzadeh, M. (2021). Fog data management: a vision, challenges, and future directions. Journal of Network and Computer Applications, 174, 102882. https://doi.org/10.1016/j.jnca.2020.102882.
 
Sahil, Sood, S.K. (2022). Fog-Cloud centric IoT-based cyber physical framework for panic oriented disaster evacuation in smart cities. Earth Science Informatics, 15, 1449–1470. https://doi.org/10.1007/s12145-020-00481-6.
 
Santos, G., Endo, P., Monteiro, K., Rocha, E., Silva, I., Lynn, T. (2019). Accelerometer-based human fall detection using convolutional neural networks. Sensors, 19(7), 1644. https://doi.org/10.3390/s19071644.
 
Scirè, A., Tropeano, F., Anagnostopoulos, A., Chatzigiannakis, I. (2019). Fog-computing-based heartbeat detection and arrhythmia classification using machine learning. Algorithms, 12(2), 32. https://doi.org/10.3390/a12020032.
 
Shirvanian, N., Shams, M., Rahmani, A.M. (2022). Internet of Things data management: a systematic literature review, vision, and future trends. International Journal of Communication Systems, 35(14). https://doi.org/10.1002/dac.5267.
 
Silva, D.M.A.D., Sofia, R.C. (2020). A discussion on context-awareness to better support the IoT cloud/edge continuum. IEEE Access, 8, 193686–193694. https://doi.org/10.1109/access.2020.3032388.
 
Silva, F.S.D., Silva, E., Neto, E.P., Lemos, M., Neto, A.J.V., Esposito, F. (2020). A taxonomy of DDoS attack mitigation approaches featured by SDN technologies in IoT scenarios. Sensors, 20(11). https://doi.org/10.3390/s20113078.
 
Singh, D., Singh, R., Gehlot, A., Akram, S.V., Priyadarshi, N., Twala, B. (2022). An imperative role of digitalization in monitoring cattle health for sustainability. Electronics, 11(17), 2702. https://doi.org/10.3390/electronics11172702.
 
Singh, J., Singh, P., Gill, S.S. (2021). Fog computing: a taxonomy, systematic review, current trends and research challenges. Journal of Parallel and Distributed Computing, 157, 56–85. https://doi.org/10.1016/j.jpdc.2021.06.005.
 
Singh, K., Malhotra, J. (2022). Smart neurocare approach for detection of epileptic seizures using deep learning based temporal analysis of EEG patterns. Multimedia Tools and Applications, 81(20), 29555–29586. https://doi.org/10.1007/s11042-022-12512-z.
 
Sisodia, A., Jindal, R. (2021). A meta-analysis of Industry 4.0 design principles applied in the health sector. Engineering Applications of Artificial Intelligence, 104, 104377. https://doi.org/10.1016/j.engappai.2021.104377.
 
Sood, S.K., Mahajan, I. (2018). A fog assisted cyber-physical framework for identifying and preventing coronary heart disease. Wireless Personal Communications, 101(1), 143–165. https://doi.org/10.1007/s11277-018-5680-y.
 
Suggala, R.K., Krishna, M.V., Swain, S.K. (2022). Health monitoring jeopardy prophylaxis model based on machine learning in fog computing. Transactions on Emerging Telecommunications Technologies, 33(7). https://doi.org/10.1002/ett.4497.
 
Sun, L., Yu, Q., Peng, D., Subramani, S., Wang, X. (2021). FogMed: a fog-based framework for disease prognosis based medical sensor data streams. Computers, Materials & Continua, 66(1), 603–619. https://doi.org/10.32604/cmc.2020.012515.
 
Swamy, S.N., Kota, S.R. (2020). An empirical study on system level aspects of Internet of Things (IoT). IEEE Access, 8, 188082–188134. https://doi.org/10.1109/access.2020.3029847.
 
Uslu, B.Ç., Okay, E., Dursun, E. (2020). Analysis of factors affecting IoT-based smart hospital design. Journal of Cloud Computing, 9(1). https://doi.org/10.1186/s13677-020-00215-5.
 
Vijayakumar, V., Malathi, D., Subramaniyaswamy, V., Saravanan, P., Logesh, R. (2019). Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases. Computers in Human Behavior, 100, 275–285. https://doi.org/10.1016/j.chb.2018.12.009.
 
Vilela, P.H., Rodrigues, J.J.P.C., da R. Righi, R., Kozlov, S., Rodrigues, V.F. (2020). Looking at fog computing for e-health through the lens of deployment challenges and applications. Sensors, 20(9). https://doi.org/10.3390/s20092553.
 
Xue, D., Nazir, S., Peng, Z., Khattak, H. (2021). Selection and ranking of fog computing-based IoT for monitoring of health using the analytic network approach. Complexity, 2021, 1–11. https://doi.org/10.1155/2021/9964303.
 
Yaqoob, I., Salah, K., Jayaraman, R., Al-Hammadi, Y. (2022). Blockchain for healthcare data management: opportunities, challenges, and future recommendations. Neural Computing and Applications. 34, 11475–11490. https://doi.org/10.1007/s00521-020-05519-w.
 
Younan, M., Houssein, E.H., Elhoseny, M., Ali, A.A. (2020). Challenges and recommended technologies for the industrial Internet of Things: a comprehensive review. Measurement, 151. https://doi.org/10.1016/j.measurement.2019.107198.
 
Yu, H.Q., Reiff-Marganiec, S. (2021). Targeted ensemble machine classification approach for supporting IoT enabled skin disease detection. IEEE Access, 9, 50244–50252. https://doi.org/10.1109/access.2021.3069024.

Biographies

Navakauskas Dalius
https://orcid.org/0000-0001-8897-7366
dalius.navakauskas@vilniustech.lt

D. Navakauskas is a full professor in the Department of Electronic Systems and Vice-Rector for Science and Innovation at Vilnius Gediminas Technical University, Lithuania. He received his honour diploma of radio-electronics engineer in 1992, MSc in electronics degree in 1994, doctor of electrical and electronic engineering degree in 1999, passed habilitation procedure in informatics engineering in 2005, received professor title in 2008, all at Vilnius Gediminas Technical University. Prof. D. Navakauskas is a senior member of the IEEE, active member of IEEE Computational Intelligence and Signal Processing Societies, currently serves as an IEEE R8 PEAC member and IEEE Lithuania Section Treasurer. He has published more than 100 internationally reviewed papers, two monographs in the field of intelligent electronic systems and four textbooks for students. Main research interests include computational intelligence, signal and image processing, bioinformatics.

Kazlauskas Mantas
https://orcid.org/0000-0003-3990-1992
mantas.kazlauskas@vilniustech.lt

M. Kazlauskas is a PhD student of electrical and electronic engineering in the Department of Electronic Systems at Vilnius Gediminas Technical University, Lithuania. He received diploma of computer science in 2017, MSc in computer engineering in 2020. M. Kazlauskas is a student member of the IEEE. Main research interests are computational intelligence, signal and image processing, informatics.


Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2023 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
fog computing internet of things healthcare systematic review

Metrics
since January 2020
635

Article info
views

296

Full article
views

296

PDF
downloads

46

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy