Pub. online:15 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 2 (2024), pp. 421–452
Abstract
The interval-valued intuitionistic fuzzy sets (IVIFSs), based on the intuitionistic fuzzy sets (IFSs), combine the classical decision method and its research and application is attracting attention. After a comparative analysis, it becomes clear that multiple classical methods with IVIFSs’ information have been applied to many practical issues. In this paper, we extended the classical EDAS method based on the Cumulative Prospect Theory (CPT) considering the decision experts (DEs)’ psychological factors under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, an original EDAS method, based on the CPT under IVIFSs (IVIF-CPT-EDAS) method, is created for multiple-attribute group decision making (MAGDM) issues. Meanwhile, the information entropy method is used to evaluate the attribute weight. Finally, a numerical example for Green Technology Venture Capital (GTVC) project selection is given, some comparisons are used to illustrate the advantages of the IVIF-CPT-EDAS method and a sensitivity analysis is applied to prove the effectiveness and stability of this new method.
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 1–33
Abstract
Innovations in technology emerged with digitalization affect all sectors, including supply chain and logistics. The term “digital supply chain” has arisen as a relatively new concept in the manufacturing and service sectors. Organizations planning to utilize the benefits of digitalization, especially in the supply chain area, have uncertainties on how to adapt digitalization, which criteria they will evaluate, what kind of strategies should be developed, and which should be given more importance. Multi-criteria decision making (MCDM) approaches can be addressed to determine the best strategy under various criteria in digital transformation. Because of the need to capture this uncertainty, fermatean fuzzy sets (FFSs) have been preferred in the study to widen the definition domain of uncertainty parameters. Interval-valued fermatean fuzzy sets (IVFFSs) are one of the most often used fuzzy set extensions to cope with uncertainty. Therefore, a new interval-valued fermatean fuzzy analytic hierarchy process (IVFF-AHP) method has been developed. After determining the main criteria and sub-criteria, the IVFF-AHP method has been used for calculating the criteria weights and ranking the alternatives. By determining the most important strategy and criteria, the study provides a comprehensive framework of digital transformation in the supply chain.
Pub. online:2 Dec 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 4 (2020), pp. 707–722
Abstract
Spherical fuzzy sets theory is useful and advantageous for handling uncertainty and imprecision in multiple attribute decision-making problems by considering membership, non-membership, and indeterminacy degrees. In this paper, by extending the classical linear assignment method, we propose a novel method called the spherical fuzzy linear assignment method (SF-LAM) to solve multiple criteria group decision-making problems in the spherical fuzzy environment. A ranking procedure consisting of aggregation functions, score functions, accuracy functions, weighted rank frequency, and a binary mathematical model are presented to determine the criterion-wise preferences and various alternatives’ priority order. The proposed method’s applicability and validity are shown through the selection problem among wind power farm locations. The proposed method helps managers to find the best location to construct the wind power plant based on the determined criteria. Finally, a comparative analysis is performed between the proposed spherical fuzzy linear assignment (SF-LAM) model and the spherical fuzzy analytic hierarchy process (SF-AHP) and spherical fuzzy WASPAS methods.
Pub. online:26 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 2 (2020), pp. 225–248
Abstract
Today energy demand in the world cannot be met based on the growing population of the countries. Exhaustible resources are not enough to supply this energy requirement. Furthermore, the pollution created by these sources is one of the most important issues for all living things. In this context, clean and sustainable energy alternatives need to be considered. In this study, a novel interval-valued neutrosophic (IVN) ELECTRE I method is conducted to select renewable energy alternative for a municipality. A new division operation and deneutrosophication method for interval-valued neutrosophic sets is proposed. A sensitivity analysis is also implemented to check the validity of the proposed method. The obtained results and the sensitivity analysis demonstrate that the given decision in the application is robust. The results of the proposed method determine that the wind power plant is the best alternative and our proposed method’s decisions are consistent and reliable through the results of comparative and sensitivity analyses.
Journal:Informatica
Volume 6, Issue 3 (1995), pp. 313–322
Abstract
The exact solution of the reliability of structures under stochastic loading is generally difficult, and various approximate methods have been developed. The most popular are the linearization method, the Monte-Carlo method and its numerous variants. In this paper new modification of the Monte-Carlo method based on asymptotical expansion is examined. Results of mathematical simulation are given.