1 Introduction
1.1 Research Motivation
1.2 Contributions
-
1. Some new operational laws are presented in order to fair treatment of belongingness and non-belongingness grades.
-
2. Four new operators, namely qROF improved power weighted averaging and geometric (qROFIPWA and qROFIPWG, resp.) operators, qROF improved power weighted averaging and geometric MSM (qROFIPWAMSM and qROFIPWGMSM, resp.) operators are developed.
-
3. A novel DM approach is developed based on the proposed operators. This proposed approach can resolve the limitations of Liu et al. (2020).
-
4. To show the efficiency of the proposed methodology, a personnel selection problem is considered under qROF setting.
-
5. A detailed comparative investigation is demonstrated to validate the superiority of the proposed model.
2 Preliminaries
2.1 q-Rung Orthopair Fuzzy Sets (qROFSs)
Definition 1 (Yager, 2017).
Definition 2 (Liu and Wang, 2018).
Definition 3 (Liu and Wang, 2018).
Definition 4 (Liu and Wang, 2018).
Definition 5 (Liu and Wang, 2018).
(3)
\[\begin{aligned}{}(\mathrm{i})& \hspace{2.5pt}{\Theta _{1}}\otimes {\Theta _{2}}=\big\langle \sqrt[q]{1-\big(1-{\Delta _{1}^{q}}\big)\big(1-{\Delta _{2}^{q}}\big)},{\nabla _{1}}{\nabla _{2}}\big\rangle ,\end{aligned}\](4)
\[\begin{aligned}{}(\mathrm{ii})& \hspace{2.5pt}{\Theta _{1}}\otimes {\Theta _{2}}=\big\langle {\Delta _{1}}{\Delta _{2}},\sqrt[q]{\big(1-\big(1-{\nabla _{1}^{q}}\big)\big(1-{\nabla _{2}^{q}}\big)\big)}\big\rangle ,\end{aligned}\]Definition 6.
2.2 Power Averaging Operator (PAO)
Definition 7 (Yager, 2001).
(8)
\[ PA({b_{1}},{b_{2}},\dots ,{b_{n}})=\frac{{\textstyle\textstyle\sum _{i=1}^{n}}(1+\psi ({b_{i}})){b_{i}}}{{\textstyle\textstyle\sum _{i=1}^{n}}(1+\psi ({b_{i}}))},\]3 qROF Improved Power Weighted Operators
3.1 New Operations Between qROFNs
Definition 8.
(9)
\[\begin{aligned}{}(\mathrm{i})& \hspace{2.5pt}{\Theta _{1}}\tilde{\oplus }{\Theta _{2}}=\left\langle \sqrt[q]{1-{\prod \limits_{r=1}^{2}}\big(1-{\Delta _{r}^{q}}\big)},\sqrt[q]{{\prod \limits_{r=1}^{2}}\big(1-{\Delta _{r}^{q}}\big)-{\prod \limits_{r=1}^{2}}\big(1-{\Delta _{r}^{q}}-{\nabla _{r}^{q}}\big)}\right\rangle ;\end{aligned}\](10)
\[\begin{aligned}{}(\mathrm{ii})& \hspace{2.5pt}{\Theta _{1}}\tilde{\otimes }{\Theta _{2}}=\left\langle \sqrt[q]{{\prod \limits_{r=1}^{2}}\big(1-{\nabla _{r}^{q}}\big)-{\prod \limits_{r=1}^{2}}\big(1-{\Delta _{r}^{q}}-{\nabla _{r}^{q}}\big)},\sqrt[q]{1-{\prod \limits_{r=1}^{2}}\big(1-{\nabla _{r}^{q}}\big)}\right\rangle ;\end{aligned}\]Example 1.
Example 2.
Example 3.
Example 4.
Theorem 1.
-
(i) ${\Theta _{1}}\tilde{\oplus }\hspace{0.1667em}{\Theta _{2}}={\Theta _{2}}\tilde{\oplus }{\Theta _{1}}$;
-
(ii) ${\Theta _{1}}\tilde{\otimes }\hspace{0.1667em}{\Theta _{2}}={\Theta _{2}}\tilde{\otimes }\hspace{0.1667em}{\Theta _{1}}$;
-
(iii) $\lambda ({\Theta _{1}}\tilde{\oplus }{\Theta _{2}})=\lambda {\Theta _{1}}\tilde{\oplus }\hspace{0.1667em}\lambda {\Theta _{2}}$;
-
(iv) ${({\Theta _{1}}\tilde{\otimes }\hspace{0.1667em}{\Theta _{2}})^{\lambda }}={\Theta _{1}^{\lambda }}\tilde{\otimes }\hspace{0.1667em}{\Theta _{2}^{\lambda }}$;
-
(v) $({\lambda _{1}}+{\lambda _{2}}){\Theta _{1}}={\lambda _{1}}{\Theta _{1}}\tilde{\oplus }\hspace{0.1667em}{\lambda _{2}}{\Theta _{1}}$;
-
(vi) ${\Theta _{1}^{{\lambda _{1}}+{\lambda _{2}}}}={\Theta _{1}^{{\lambda _{1}}}}\tilde{\otimes }\hspace{0.1667em}{\Theta _{1}^{{\lambda _{2}}}}$.
3.2 qROF Improved Power Weighted Averaging Operators
Definition 9.
Theorem 2.
(15)
\[\begin{aligned}{}& \text{qROFIPWA}({\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{n}})\\ {} & \hspace{1em}=\left\langle {\Bigg(1-{\prod \limits_{r=1}^{n}}{\big(1-{\Delta _{r}^{q}}\big)^{{\Omega _{r}}}}\Bigg)^{\frac{1}{q}}},{\Bigg({\prod \limits_{r=1}^{n}}{\big(1-{\Delta _{r}^{q}}\big)^{{\Omega _{r}}}}-{\prod \limits_{r=1}^{n}}{\big(1-{\Delta _{r}^{q}}-{\nabla _{r}^{q}}\big)^{{\Omega _{r}}}}\Bigg)^{\frac{1}{q}}}\right\rangle .\end{aligned}\]Theorem 3 (Idempotency).
Theorem 4 (Boundedness).
Theorem 5 (Monotonicity).
Definition 10.
(16)
\[ {\text{qROFIPWAMSM}^{(p)}}({\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{n}})={\Bigg(\frac{1}{{^{n}}{c_{p}}}\hspace{-0.1667em}\hspace{-0.1667em}\underset{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}{\bigoplus }\Bigg(\hspace{-0.1667em}{\underset{j=1}{\overset{p}{\bigotimes }}}(n{\Omega _{{t_{j}}}}{\Theta _{{t_{j}}}})\Bigg)\Bigg)^{\frac{1}{p}}},\]Theorem 6.
(17)
\[\begin{aligned}{}& {\text{qROFIPWAMSM}^{(p)}}({\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{n}})\\ {} & \hspace{1em}=\Bigg\langle \Bigg(\Bigg(1-\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg(1-{\prod \limits_{j=1}^{p}}\big(1-{\big(1-{({\Delta _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\\ {} & \hspace{2em}+{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\big)+{\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg){^{\frac{1}{{^{n}}{c_{p}}}}}\\ {} & \hspace{2em}+{\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg({\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg)^{\frac{1}{{^{n}}{c_{p}}}}}\Bigg){^{\frac{1}{r}}}\\ {} & \hspace{2em}-{\Bigg({\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg({\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg)^{\frac{1}{{^{n}}{c_{p}}}}}\Bigg)^{\frac{1}{p}}}\Bigg){^{\frac{1}{q}}},\\ {} & \hspace{2em}\Bigg(1-\Bigg(1-\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg(1-{\prod \limits_{j=1}^{p}}\big(1-{\big(1-{({\Delta _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\\ {} & \hspace{2em}+{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\big)+{\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg){^{\frac{1}{{^{n}}{c_{p}}}}}\\ {} & \hspace{2em}+{\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg({\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg)^{\frac{1}{{^{n}}{c_{p}}}}}\Bigg){^{\frac{1}{p}}}\Bigg){^{\frac{1}{q}}}\Bigg\rangle .\end{aligned}\]Theorem 7 (Idempotency).
Theorem 8 (Boundedness).
Theorem 9 (Monotonicity).
3.3 qROF Improved Power Weighted Geometric Operators
Theorem 10.
(19)
\[\begin{aligned}{}& \text{qROFIPWG}({\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{n}})\\ {} & \hspace{1em}=\left\langle {\Bigg({\prod \limits_{r=1}^{n}}{\big(1-{\nabla _{r}^{q}}\big)^{{\Omega _{r}}}}-{\prod \limits_{r=1}^{n}}{\big(1-{\Delta _{r}^{q}}-{\nabla _{r}^{q}}\big)^{{\Omega _{r}}}}\Bigg)^{\frac{1}{q}}},\right.\left.{\Bigg(1-{\prod \limits_{r=1}^{n}}{\big(1-{\nabla _{r}^{q}}\big)^{{\Omega _{r}}}}\Bigg)^{\frac{1}{q}}}\right\rangle .\end{aligned}\]Theorem 11.
Theorem 12.
Theorem 13.
Definition 12.
(20)
\[ {\text{qROFIPWGMSM}^{(p)}}({\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{n}})=\frac{1}{p}{\Big(\underset{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}{\widetilde{\bigotimes }}\Big({\underset{j=1}{\overset{p}{\widetilde{\bigoplus }}}}{\Theta _{{t_{j}}}^{{\Omega _{{t_{j}}}}}}\Big)\Big)^{\frac{1}{{^{n}}{c_{p}}}}},\]Theorem 14.
(21)
\[\begin{aligned}{}& {\text{qROFIPWGMSM}^{(p)}}({\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{n}})\\ {} & \hspace{1em}=\Bigg\langle \Bigg(1-\Bigg(1-\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg(1-{\prod \limits_{j=1}^{p}}\big(1-{\big(1-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\\ {} & \hspace{2em}+{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\big)+{\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg){^{\frac{1}{{^{n}}{c_{p}}}}}\\ {} & \hspace{2em}+{\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg({\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg)^{\frac{1}{{^{n}}{c_{p}}}}}\Bigg){^{\frac{1}{p}}}\Bigg){^{\frac{1}{q}}},\\ {} & \hspace{2em}\Bigg(\Bigg(1-\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg(1-{\prod \limits_{j=1}^{p}}\big(1-{\big(1-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\\ {} & \hspace{2em}+{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\big)+{\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg){^{\frac{1}{{^{n}}{c_{p}}}}}\\ {} & \hspace{2em}+{\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg({\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg)^{\frac{1}{{^{n}}{c_{p}}}}}\Bigg){^{\frac{1}{p}}}\\ {} & \hspace{2em}-{\Bigg({\Bigg(\prod \limits_{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}\Bigg({\prod \limits_{j=1}^{p}}{\big(1-{({\Delta _{{t_{j}}}})^{q}}-{({\nabla _{{t_{j}}}})^{q}}\big)^{n{\Omega _{{t_{j}}}}}}\Bigg)\Bigg)^{\frac{1}{{^{n}}{c_{p}}}}}\Bigg)^{\frac{1}{p}}}\Bigg){^{\frac{1}{q}}}\Bigg\rangle .\end{aligned}\]Theorem 15.
Theorem 16.
Theorem 17 (Monotonicity).
4 Group Decision Making Methodology
(22)
\[ {\tilde{\Theta }_{ij}^{(d)}}=\left\{\begin{array}{l@{\hskip4.0pt}l}\langle {\Delta _{ij}^{(d)}},{\nabla _{ij}^{(d)}}\rangle \hspace{1em}& \text{if}\hspace{2.5pt}{C_{j}}\hspace{2.5pt}\text{is of benefit-type},\\ {} \langle {\nabla _{ij}^{(d)}},{\Delta _{ij}^{(d)}}\rangle \hspace{1em}& \text{if}\hspace{2.5pt}{C_{j}}\hspace{2.5pt}\text{is of cost-type}.\end{array}\right.\](23)
\[ \textit{Supp}\big({\tilde{\Theta }_{ij}^{(d)}},{\tilde{\Theta }_{ij}^{(s)}}\big)=1-\textit{Dist}\big({\tilde{\Theta }_{ij}^{(d)}},{\tilde{\Theta }_{ij}^{(s)}}\big)\big(d,s=1(1)l;d\ne s\big),\](24)
\[ \psi \big({\tilde{\Theta }_{ij}^{(d)}}\big)={\sum \limits_{s=1,s\ne d}^{l}}\textit{Supp}\big({\tilde{\Theta }_{ij}^{(d)}},{\tilde{\Theta }_{ij}^{(s)}}\big)\big(i=1(1)m;j=1(1)n;d=1(1)l\big).\](25)
\[ {\Omega _{ij}^{(d)}}=\frac{{\eta _{d}}(1+\psi ({\tilde{\Theta }_{ij}^{(d)}}))}{{\textstyle\textstyle\sum _{d=1}^{l}}{\eta _{d}}(1+\psi ({\tilde{\Theta }_{ij}^{(d)}}))}.\](26)
\[\begin{aligned}{}& \text{qROFIPWA}\big({\tilde{\Theta }_{ij}^{(1)}},{\tilde{\Theta }_{ij}^{(2)}},\dots ,{\tilde{\Theta }_{ij}^{(l)}}\big)\\ {} & \hspace{1em}=\Bigg\langle {\Bigg(1-{\prod \limits_{d=1}^{l}}{\big(1-{\big({\tilde{\Delta }_{ij}^{(d)}}\big)^{q}}\big)^{{\Omega _{ij}^{(d)}}}}\Bigg)^{\frac{1}{q}}},\\ {} & \hspace{2em}{\Bigg({\prod \limits_{d=1}^{l}}{\big(1-{\big({\tilde{\Delta }_{ij}^{(d)}}\big)^{q}}\big)^{{\Omega _{ij}^{(d)}}}}-{\prod \limits_{d=1}^{l}}{\big(1-{\big({\tilde{\Delta }_{ij}^{(d)}}\big)^{q}}-{\big({\tilde{\nabla }_{ij}^{(d)}}\big)^{q}}\big)^{{\Omega _{ij}^{(d)}}}}\Bigg)^{\frac{1}{q}}}\Bigg\rangle ,\end{aligned}\](27)
\[\begin{aligned}{}& \text{qROFIPWG}\big({\tilde{\Theta }_{ij}^{(1)}},{\tilde{\Theta }_{ij}^{(2)}},\dots ,{\tilde{\Theta }_{ij}^{(l)}}\big)\\ {} & \hspace{1em}=\Bigg\langle {\Bigg({\prod \limits_{d=1}^{l}}{\big(1-{\big({\tilde{\nabla }_{ij}^{(d)}}\big)^{q}}\big)^{{\Omega _{ij}^{(d)}}}}-{\prod \limits_{d=1}^{l}}{\big(1-{\big({\tilde{\Delta }_{ij}^{(d)}}\big)^{q}},-{\big({\tilde{\nabla }_{ij}^{(d)}}\big)^{q}}\big)^{{\Omega _{ij}^{(d)}}}}\Bigg)^{\frac{1}{q}}},\\ {} & \hspace{2em}{\Bigg(1-{\prod \limits_{d=1}^{l}}{\big(1-{\big({\tilde{\nabla }_{ij}^{(d)}}\big)^{q}}\big)^{{\Omega _{ij}^{(d)}}}}\Bigg)^{\frac{1}{q}}}\Bigg\rangle .\end{aligned}\](28)
\[ \textit{Supp}({\Theta _{ij}},{\Theta _{iy}})=1-\textit{Dist}({\Theta _{ij}},{\Theta _{iy}})\big(j,y=1(1)n;j\ne y\big),\](29)
\[ \psi ({\Theta _{ij}})={\sum \limits_{y=1,y\ne j}^{n}}\textit{Supp}({\Theta _{ij}},{\Theta _{iy}})\big(i=1(1)m;j=1(1)n\big).\](30)
\[ {\Omega _{ij}}=\frac{{\varpi _{j}}(1+\psi ({\Theta _{ij}}))}{{\textstyle\textstyle\sum _{j=1}^{n}}{\varpi _{j}}(1+\psi ({\Theta _{ij}}))}\big(i=1(1)m;j=1(1)n\big).\](31)
\[\begin{aligned}{}{\Theta _{i}}& ={\text{qROFIPWAMSM}^{(p)}}({\Theta _{i1}},{\Theta _{i2}},\dots ,{\Theta _{in}})\\ {} & ={\Bigg(\frac{1}{{^{n}}{c_{p}}}\underset{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}{\bigoplus }\Bigg({\underset{j=1}{\overset{p}{\bigotimes }}}(n{\Omega _{i{t_{j}}}}{\Theta _{i{t_{j}}}})\Bigg)\Bigg)^{\frac{1}{p}}},\end{aligned}\](32)
\[\begin{aligned}{}{\Theta _{i}}& ={\text{qROFIPWGMSM}^{(p)}}({\Theta _{i1}},{\Theta _{i2}},\dots ,{\Theta _{in}})\\ {} & =\frac{1}{p}{\Big(\underset{1\leqslant {t_{1}}<{t_{2}}<\cdots <{t_{p}}\leqslant n}{\widetilde{\bigotimes }}\Big({\underset{j=1}{\overset{\hspace{0.1667em}p}{\widetilde{\bigoplus }}}}{\Theta _{i{t_{j}}}^{n{\Omega _{i{t_{j}}}}}}\Big)\Big)^{\frac{1}{{^{n}}{c_{p}}}}}.\end{aligned}\]5 Application of the Proposed Methodology
5.1 Problem Description
5.2 Problem Solution
Table 1
Expert | Alternative | ${L_{1}}$ | ${L_{2}}$ | ${L_{3}}$ | ${L_{4}}$ |
${D_{1}}$ | ${X_{1}}$ | $\langle 0.2,0.6\rangle $ | $\langle 0.4,0.6\rangle $ | $\langle 0.4,0.3\rangle $ | $\langle 0.5,0.6\rangle $ |
${X_{2}}$ | $\langle 0.6,0.5\rangle $ | $\langle 0.6,0.5\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 0.5,0.2\rangle $ | |
${X_{3}}$ | $\langle 0.8,0.2\rangle $ | $\langle 0.5,0.2\rangle $ | $\langle 0.5,0.3\rangle $ | $\langle 0.4,0.3\rangle $ | |
${X_{4}}$ | $\langle 0.5,0.6\rangle $ | $\langle 0.3,0.5\rangle $ | $\langle 0.5,0.2\rangle $ | $\langle 0.5,0.2\rangle $ | |
${X_{5}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.4,0.7\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.6,0.6\rangle $ | |
${X_{1}}$ | $\langle 0.4,0.6\rangle $ | $\langle 0.2,0.2\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 0.4,0.6\rangle $ | |
${D_{2}}$ | ${X_{2}}$ | $\langle 0.5,0.1\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.5,0.5\rangle $ | $\langle 0.4,0.3\rangle $ |
${X_{3}}$ | $\langle 0.7,0.3\rangle $ | $\langle 0.4,0.2\rangle $ | $\langle 0.4,0.1\rangle $ | $\langle 0.5,0.4\rangle $ | |
${X_{4}}$ | $\langle 0.5,0.4\rangle $ | $\langle 0.5,0.7\rangle $ | $\langle 0.5,0.6\rangle $ | $\langle 0.3,0.8\rangle $ | |
${X_{5}}$ | $\langle 0.6,0.4\rangle $ | $\langle 0.3,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.4,0.2\rangle $ | |
${X_{1}}$ | $\langle 0.7,0.7\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 0.2,0.4\rangle $ | $\langle 0.4,0.6\rangle $ | |
${D_{3}}$ | ${X_{2}}$ | $\langle 0.4,0.2\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.5,0.1\rangle $ |
${X_{3}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.4,0.2\rangle $ | $\langle 0.4,0.3\rangle $ | $\langle 0.6,0.4\rangle $ | |
${X_{4}}$ | $\langle 0.3,0.5\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 0.5,0.2\rangle $ | $\langle 0.8,0.2\rangle $ | |
${X_{5}}$ | $\langle 0.4,0.6\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.6,0.1\rangle $ |
Table 2
Alternative | ${L_{1}}$ | ${L_{2}}$ | ${L_{3}}$ | ${L_{4}}$ |
${X_{1}}$ | $\langle 0.457546,0.727680\rangle $ | $\langle 0.377018,0.456022\rangle $ | $\langle 0.411592,0.370298\rangle $ | $\langle 0.438196,0.600809\rangle $ |
${X_{2}}$ | $\langle 0.516059,0.345696\rangle $ | $\langle 0.578450,0.442128\rangle $ | $\langle 0.528034,0.422266\rangle $ | $\langle 0.464399,0.226244\rangle $ |
${X_{3}}$ | $\langle 0.710191,0.264441\rangle $ | $\langle 0.438196,0.200154\rangle $ | $\langle 0.438588,0.246261\rangle $ | $\langle 0.500551,0.375744\rangle $ |
${X_{4}}$ | $\langle 0.461582,0.510394\rangle $ | $\langle 0.443096,0.594864\rangle $ | $\langle 0.5,0.425597\rangle $ | $\langle 0.578171,0.513749\rangle $ |
${X_{5}}$ | $\langle 0.526362,0.432299\rangle $ | $\langle 0.437910,0.502261\rangle $ | $\langle 0.562724,0.362961\rangle $ | $\langle 0.534898,0.427268\rangle $ |
5.3 Effects of the Parameter ‘p’ on Ranking Orders
Table 3
Parameter | Score value | Ranking order |
$p=1$ | ${V_{1}}=-0.1497$, ${V_{2}}=0.1332$, ${V_{3}}=0.1849$, ${V_{4}}=0.0222$, ${V_{5}}=0.1092$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
$p=2$ | ${V_{1}}=-0.1202$, ${V_{2}}=0.1362$, ${V_{3}}=0.1927$, ${V_{4}}=0.0404$, ${V_{5}}=0.1162$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
$p=3$ | ${V_{1}}=-0.1040$, ${V_{2}}=0.1388$, ${V_{3}}=0.2002$, ${V_{4}}=0.0579$, ${V_{5}}=0.1242$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
$p=4$ | ${V_{1}}=-0.0641$, ${V_{2}}=0.0307$, ${V_{3}}=0.0484$, ${V_{4}}=-0.0109$, ${V_{5}}=0.0199$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
Table 4
Parameter | Score value | Ranking order |
$p=1$ | ${V_{1}}=0.0173$, ${V_{2}}=0.0043$, ${V_{3}}=0.0014$, ${V_{4}}=0.0020$, ${V_{5}}=-0.0017$ | ${X_{1}}\succ {X_{2}}>{X_{4}}>{X_{3}}>{X_{5}}$ |
$p=2$ | ${V_{1}}=-0.0788$, ${V_{2}}=0.1435$, ${V_{3}}=0.1823$, ${V_{4}}=-0.0452$, ${V_{5}}=0.1155$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
$p=3$ | ${V_{1}}=-0.1772$, ${V_{2}}=0.0349$, ${V_{3}}=0.1132$, ${V_{4}}=-0.1631$, ${V_{5}}=0.0176$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
$p=4$ | ${V_{1}}=-0.1280$, ${V_{2}}=0.0609$, ${V_{3}}=0.0883$, ${V_{4}}=-0.0983$, ${V_{5}}=0.0538$ | ${X_{3}}\succ {X_{2}}>{X_{5}}>{X_{4}}>{X_{2}}$ |
5.4 Comparative Analysis with Existing Methods
Table 5
Method | Score value | Ranking order |
Jana et al. (2019b) with qROFDWA operator | ${V_{1}}=-0.0212$, ${V_{2}}=0.1885$, ${V_{3}}=0.2743$, ${V_{4}}=0.0522$, ${V_{5}}=0.1233$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Wei et al. (2018) with qROFGWHM operator | ${V_{1}}=-0.2942$, ${V_{2}}=-0.0703$, ${V_{3}}=-0.0272$, ${V_{4}}=-0.1913$, ${V_{5}}=-0.1324$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Wei et al. (2018) with qROFGWGHM operator | ${V_{1}}=0.0884$, ${V_{2}}=0.3162$, ${V_{3}}=0.3317$, ${V_{4}}=0.2660$, ${V_{5}}=0.3294$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Liu and Liu (2018) with qROFWBM operator | ${V_{1}}=-0.7144$, ${V_{2}}=-0.5922$, ${V_{3}}=-0.5780$, ${V_{4}}=-0.6416$, ${V_{5}}=-6163$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Yang and Pang (2020) with qROFWBMDA operator | ${V_{1}}=-0.4993$, ${V_{2}}=-0.2204$, ${V_{3}}=-0.0846$, ${V_{4}}=-0.4227$, ${V_{5}}=-0.2986$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Liu and Wang (2018) with qROFWA operator | ${V_{1}}=-0.0919$, ${V_{2}}=0.1568$, ${V_{3}}=0.2051$, ${V_{4}}=0.0309$, ${V_{5}}=0.1130$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Garg and Chen (2020) with qROFWNA operator | ${V_{1}}=0.5931$, ${V_{2}}=0.7337$, ${V_{3}}=0.7525$, ${V_{4}}=0.6783$, ${V_{5}}=0.7411$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Liu et al. (2020) with qROFPWMSM operator | ${V_{1}}=-0.1154$, ${V_{2}}=0.1143$, ${V_{3}}=0.1656$, ${V_{4}}=0.0348$, ${V_{5}}=0.0934$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Proposed method with qROFIPWA operator and qROFIPWAMSM operator | ${V_{1}}=-0.1202$, ${V_{2}}=0.1362$, ${V_{3}}=0.1927$, ${V_{4}}=0.0404$, ${V_{5}}=0.1162$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Proposed method with qROFIPWG operator and qROFIPWGMSM operator | ${V_{1}}=-0.0788$, ${V_{2}}=0.1435$, ${V_{3}}=0.1823$, ${V_{4}}=-0.0452$, ${V_{5}}=0.1156$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
5.5 Comparative Analysis Based on Biasness of Experts
Table 6
Method | Score value | Ranking order |
Jana et al. (2019b) with qROFDWA operator | ${V_{1}}=-0.0343$, ${V_{2}}=0.2170$, ${V_{3}}=0.2042$, ${V_{4}}=0.0133$, ${V_{5}}=0.1445$ | ${X_{2}}\succ {X_{3}}\succ {X_{5}}\succ {X_{1}}\succ {X_{4}}$ |
Wei et al. (2018) with qROFGWHM operator | ${V_{1}}=-0.2538$, ${V_{2}}=-0.0407$, ${V_{3}}=-0.0642$, ${V_{4}}=-0.2449$, ${V_{5}}=-0.1066$ | ${X_{2}}\succ {X_{3}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Wei et al. (2018) with qROFGWGHM operator | ${V_{1}}=0.1324$, ${V_{2}}=0.3172$, ${V_{3}}=0.3312$, ${V_{4}}=0.2084$, ${V_{5}}=0.3526$ | ${X_{5}}\succ {X_{3}}\succ {X_{2}}\succ {X_{4}}\succ {X_{1}}$ |
Liu and Liu (2018) with qROFWBM operator | ${V_{1}}=-0.7144$, ${V_{2}}=-0.5845$, ${V_{3}}=-0.5640$, ${V_{4}}=-0.6416$, ${V_{5}}=-6163$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Yang and Pang (2020) with qROFWBMDA operator | ${V_{1}}=-0.4570$, ${V_{2}}=-0.1966$, ${V_{3}}=-0.0703$, ${V_{4}}=-0.44442$, ${V_{5}}=-0.2833$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Liu and Wang (2018) with qROFWA operator | ${V_{1}}=-0.0405$, ${V_{2}}=0.1789$, ${V_{3}}=0.1774$, ${V_{4}}=-0.0122$, ${V_{5}}=0.1350$ | ${X_{2}}\succ {X_{3}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Garg and Chen (2020) with qROFWNA operator | ${V_{1}}=0.5930$, ${V_{2}}=0.7395$, ${V_{3}}=0.7113$, ${V_{4}}=0.6782$, ${V_{5}}=0.7410$ | ${X_{5}}\succ {X_{3}}\succ {X_{2}}\succ {X_{4}}\succ {X_{1}}$ |
Liu et al. (2020) with qROFPWMSM operator | ${V_{1}}=-0.1154$, ${V_{2}}=0.1161$, ${V_{3}}=0.1556$, ${V_{4}}=0.0348$, ${V_{5}}=0.0934$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Proposed method with qROFIPWA operator and qROFIPWAMSM operator | ${V_{1}}=-0.1202$, ${V_{2}}=0.1422$, ${V_{3}}=0.1645$, ${V_{4}}=0.0404$, ${V_{5}}=0.1162$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Proposed method with qROFIPWG operator and qROFIPWGMSM operator | ${V_{1}}=-0.0788$, ${V_{2}}=0.1523$, ${V_{3}}=0.1562$, ${V_{4}}=-0.0452$, ${V_{5}}=0.1155$ | ${X_{3}}\succ {X_{2}}\succ {X_{5}}\succ {X_{4}}\succ {X_{1}}$ |
Table 7
Expert | Alternative | ${L_{1}}$ | ${L_{2}}$ | ${L_{3}}$ | ${L_{4}}$ |
${D_{1}}$ | X1 | $\langle 0.5,0\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.4,0.3\rangle $ | $\langle 0.5,0\rangle $ |
${X_{2}}$ | $\langle 0.7,0.2\rangle $ | $\langle 0.51,0\rangle $ | $\langle 0.5,0.1\rangle $ | $\langle 0.6,0.2\rangle $ | |
${X_{3}}$ | $\langle 0.3,0.2\rangle $ | $\langle 0.38,0.4\rangle $ | $\langle 0.6,0\rangle $ | $\langle 0.4,0.3\rangle $ | |
${X_{4}}$ | $\langle 0.5,0\rangle $ | $\langle 0.502,0.4\rangle $ | $\langle 0.5,0.3\rangle $ | $\langle 0.5,0\rangle $ | |
${X_{5}}$ | $\langle 0.6,0.1\rangle $ | $\langle 0.3,0\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.6,0.3\rangle $ | |
${X_{1}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.5,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | |
${D_{2}}$ | ${X_{2}}$ | $\langle 0.6,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.206,0.2\rangle $ | $\langle 0.4,0\rangle $ |
${X_{3}}$ | $\langle 0.4,0.3\rangle $ | $\langle 0.7,0\rangle $ | $\langle 0.35,0.2\rangle $ | $\langle 0.6,0.4\rangle $ | |
${X_{4}}$ | $\langle 0.45,0.4\rangle $ | $\langle 0.5,0.2\rangle $ | $\langle 0.6,0\rangle $ | $\langle 0.5,0.2\rangle $ | |
${X_{5}}$ | $\langle 0.4,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.6,0\rangle $ | |
${X_{1}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.5,0\rangle $ | $\langle 0.6,0.3\rangle $ | |
${D_{3}}$ | ${X_{2}}$ | $\langle 0.6,0.1\rangle $ | $\langle 0.49,0.2\rangle $ | $\langle 0.7,0\rangle $ | $\langle 0.2,0.2\rangle $ |
${X_{3}}$ | $\langle 0.7,0\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.71,0.4\rangle $ | $\langle 0.4,0\rangle $ | |
${X_{4}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.7,0\rangle $ | $\langle 0.5,0.2\rangle $ | $\langle 0.6,0.1\rangle $ | |
${X_{5}}$ | $\langle 0.62,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.3,0\rangle $ | $\langle 0.4,0.2\rangle $ |
Table 8
Method | Score value | Ranking order |
Liu and Liu (2018) with qROFWBM operator | ${V_{1}}=0.019$, ${V_{2}}=0.019$, ${V_{3}}=0.019$, ${V_{4}}=0.019$, ${V_{5}}=0.019$ | ${X_{1}}={X_{2}}={X_{3}}={X_{4}}={X_{5}}$ |
Yang and Pang (2020) with qROFWBMDA operator | ${V_{1}}=-0.0749$, ${V_{2}}=0.0459$, ${V_{3}}=-0.0633$, ${V_{4}}=-0.0262$, ${V_{5}}=-0.0352$ | ${X_{2}}\succ {X_{4}}\succ {X_{5}}\succ {X_{3}}\succ {X_{1}}$ |
Liu et al. (2020) with qROFPWMSM operator | ${V_{1}}=0.264$, ${V_{2}}=0.264$, ${V_{3}}=0.264$, ${V_{4}}=0.264$, ${V_{5}}=0.264$ | ${X_{1}}={X_{2}}={X_{3}}={X_{4}}={X_{5}}$ |
Proposed method with qROFIPWA operator and qROFIPWAMSM operator | ${V_{1}}=0.2204$, ${V_{2}}=0.2458$, ${V_{3}}=0.2010$, ${V_{4}}=0.2327$, ${V_{5}}=0.2278$ | ${X_{2}}\succ {X_{4}}\succ {X_{5}}\succ {X_{1}}\succ {X_{3}}$ |
Proposed method with qROFIPWG operator and qROFIPWGMSM operator | ${V_{1}}=0.2165$, ${V_{2}}=0.2463$, ${V_{3}}=0.2031$, ${V_{4}}=0.2297$, ${V_{5}}=0.2257$ | ${X_{2}}\succ {X_{4}}\succ {X_{5}}\succ {X_{1}}\succ {X_{3}}$ |
Table 9
Expert | Alternative | ${L_{1}}$ | ${L_{2}}$ | ${L_{3}}$ | ${L_{4}}$ |
${D_{1}}$ | X1 | $\langle 1,0\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.4,0.3\rangle $ | $\langle 1,0\rangle $ |
${X_{2}}$ | $\langle 0.7,0.2\rangle $ | $\langle 0.1,0\rangle $ | $\langle 0.5,0.1\rangle $ | $\langle 0.6,0.2\rangle $ | |
${X_{3}}$ | $\langle 1,0\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 1,0\rangle $ | $\langle 0.4,0.3\rangle $ | |
${X_{4}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.5,0.4\rangle $ | $\langle 0.5,0.3\rangle $ | $\langle 1,0\rangle $ | |
${X_{5}}$ | $\langle 0.6,0.1\rangle $ | $\langle 1,0\rangle $ | $\langle 0.6,0.2\rangle $ | $\langle 0.6,0.3\rangle $ | |
${X_{1}}$ | $\langle 0.5,0.3\rangle $ | $\langle 1,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | |
${D_{2}}$ | ${X_{2}}$ | $\langle 1,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 1,0\rangle $ | $\langle 0.4,0.5\rangle $ |
${X_{3}}$ | $\langle 0.4,0.3\rangle $ | $\langle 0.7,0.2\rangle $ | $\langle 0.4,0.2\rangle $ | $\langle 1,0\rangle $ | |
${X_{4}}$ | $\langle 0.5,0.4\rangle $ | $\langle 1,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.5,0.4\rangle $ | |
${X_{5}}$ | $\langle 1,0\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 1,0\rangle $ | $\langle 0.6,0.4\rangle $ | |
${X_{1}}$ | $\langle 0.5,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 1,0\rangle $ | $\langle 0.6,0.3\rangle $ | |
${D_{3}}$ | ${X_{2}}$ | $\langle 1,0\rangle $ | $\langle 0.5,0.2\rangle $ | $\langle 0.7,0.2\rangle $ | $\langle 1,0\rangle $ |
${X_{3}}$ | $\langle 0.7,0.2\rangle $ | $\langle 1,0\rangle $ | $\langle 0.8,0.2\rangle $ | $\langle 0.4,0.5\rangle $ | |
${X_{4}}$ | $\langle 1,0\rangle $ | $\langle 0.7,0.1\rangle $ | $\langle 1,0\rangle $ | $\langle 0.6,0.1\rangle $ | |
${X_{5}}$ | $\langle 0.6,0.3\rangle $ | $\langle 0.6,0.3\rangle $ | $\langle 0.3,0.5\rangle $ | $\langle 1,0\rangle $ |
Table 10
Method | Score value | Ranking order |
Yang and Pang (2020) with qROFWBMDA operator | ${V_{1}}=0.6133$, ${V_{2}}=0.8372$, ${V_{3}}=0.6602$, ${V_{4}}=0.5890$, ${V_{5}}=0.6265$ | ${X_{2}}\succ {X_{3}}\succ {X_{5}}\succ {X_{1}}\succ {X_{4}}$ |
Liu et al. (2020) with qROFPWMSM operator | ${V_{1}}={V_{2}}={V_{3}}={V_{4}}={V_{5}}=1$. | ${X_{1}}={X_{2}}={X_{3}}={X_{4}}={X_{5}}$ |
Proposed method with qROFIPWG operator and qROFIPWGMSM operator | ${V_{1}}=0.5623$, ${V_{2}}=0.7078$, ${V_{3}}=0.6156$, ${V_{4}}=0.5533$, ${V_{5}}=0.5863$ | ${X_{2}}\succ {X_{3}}\succ {X_{5}}\succ {X_{1}}\succ {X_{4}}$ |
Table 11
Alternative | ${L_{1}}$ | ${L_{2}}$ | ${L_{3}}$ | ${L_{4}}$ |
${X_{1}}$ | $\langle 0.5,0\rangle $ | $\langle 0.4,0.4\rangle $ | $\langle 0.4,0.3\rangle $ | $\langle 0.5,0.6\rangle $ |
${X_{2}}$ | $\langle 0.7,0.2\rangle $ | $\langle 0.5,0\rangle $ | $\langle 0.5,0.1\rangle $ | $\langle 0.6,0.4\rangle $ |
${X_{3}}$ | $\langle 0.3,0.6\rangle $ | $\langle 0.3,0.4\rangle $ | $\langle 0.6,0\rangle $ | $\langle 0.4,0.3\rangle $ |
${X_{4}}$ | $\langle 0.5,0\rangle $ | $\langle 0.7,0.5\rangle $ | $\langle 0.5,0.3\rangle $ | $\langle 0.5,0.8\rangle $ |
${X_{5}}$ | $\langle 0.6,0.5\rangle $ | $\langle 0.3,0\rangle $ | $\langle 0.6,0.4\rangle $ | $\langle 0.6,0.3\rangle $ |
Table 12
Method | Score value | Ranking order |
Yang and Pang (2020) with qROFWBMDA operator | Cannot be determined due to division by zero | Cannot be generated |
Proposed method with qROFIPWA operator and qROFIPWAMSM operator | ${V_{1}}=0.0443$, ${V_{2}}=0.2818$, ${V_{3}}=0.0709$, ${V_{4}}=0.0453$, ${V_{5}}=0.2666$ | ${X_{2}}\succ {X_{5}}\succ {X_{3}}\succ {X_{4}}\succ {X_{1}}$ |
Proposed method with qROFIPWG operator and qROFIPWGMSM operator | ${V_{1}}=-0.0014$, ${V_{2}}=0.2545$, ${V_{3}}=0.0589$, ${V_{4}}=-0.0926$, ${V_{5}}=0.1826$ | ${X_{2}}\succ {X_{5}}\succ {X_{3}}\succ {X_{1}}\succ {X_{4}}$ |