Journal:Informatica
Volume 23, Issue 4 (2012), pp. 601–620
Abstract
Multidimensional scaling with city-block distances is considered in this paper. The technique requires optimization of an objective function which has many local minima and can be non-differentiable at minimum points. This study is aimed at developing a fast and effective global optimization algorithm spanning the whole search domain and providing good solutions. A multimodal evolutionary algorithm is used for global optimization to prevent stagnation at bad local optima. Piecewise quadratic structure of the least squares objective function with city-block distances has been exploited for local improvement. The proposed algorithm has been compared with other algorithms described in literature. Through a comprehensive computational study, it is shown that the proposed algorithm provides the best results. The algorithm with fine-tuned parameters finds the global minimum with a high probability.
Journal:Informatica
Volume 19, Issue 3 (2008), pp. 447–460
Abstract
Multidimensional scaling is a technique for exploratory analysis of multidimensional data widely usable in different applications. By means of this technique the image points in a low-dimensional embedding space can be found whose inter-point distances fit the given dissimilarities between the considered objects. In this paper dependence of relative visualization error on the dimensionality of embedding space is investigated. Both artificial and practical data sets have been used. The images in three-dimensional embedding space normally show the structural properties of sets of considered objects with acceptable accuracy, and widening of applications of stereo screens makes three-dimensional visualization very attractive.
Journal:Informatica
Volume 19, Issue 3 (2008), pp. 377–390
Abstract
We investigate applicability of quantitative methods to discover the most fundamental structural properties of the most reliable political data in Lithuania. Namely, we analyze voting data of the Lithuanian Parliament. Two most widely used techniques of structural data analysis (clustering and multidimensional scaling) are compared. We draw some technical conclusions which can serve as recommendations in more purposeful application of these methods.
Journal:Informatica
Volume 14, Issue 1 (2003), pp. 121–130
Abstract
Recent publications on multidimensional scaling express contradicting opinion on multimodality of STRESS criterion. An example has been published with rigorously provable multimodality of STRESS. We present an example of data and the rigorous proof of multimodality of SSTRESS for this data. Some comments are included on widely accepted opinion that minimization of SSTRESS is easier than minimization of STRESS.
Journal:Informatica
Volume 6, Issue 2 (1995), pp. 225–232
Abstract
An algorithm for the sequential analysis of multivariate data structure is presented. The algorithm is based on the sequential nonlinear mapping of L-dimensional vectors from the L-hyperspace into a lower-dimensional (two-dimensional) vectors such that the inner structure of distances among the vectors is preserved. Expressions for the sequential nonlinear mapping are obtained. The mapping error function is chosen. Theoretical minimum amount of the very beginning simultaneously mapped vectors is obtained.