1 Introduction
Table 1
Authors | Year | Type of fuzzy sets | Problem | Publication type |
Kahraman et al. (1995) | 1995 | OFSs | Fuzzy flexibility evaluation | Conference paper |
Iliev and Fustik (2003) | 2003 | OFSs | Hydroelectric project economical evaluation | Conference paper |
Omitaomu et al. (2004) | 2004 | OFSs | Information system project for engineering economic analysis | Conference paper |
Kahraman et al. (2004) | 2004 | OFSs | Fuzzy present worth models a for quantifying manufacturing flexibility | Article |
Kahraman and Kaya (2008) | 2008 | OFSs | Fuzzy equivalent annual worth analysis in investment assessment | Book chapter |
Matos and Dimitrovski (2008) | 2008 | OFSs | Fuzzy equivalent uniform annual worth analysis | Book chapter |
Kuchta (2008) | 2008 | OFSs | Project selection optimization problem fuzzy net present value analysis | Book chapter |
Dimitrovski and Matos (2008) | 2008 | OFSs | Uncorrelated and correlated cash flow in fuzzy PW analysis | Book chapter |
Shahriari (2011) | 2011 | OFSs | Triangular fuzzy net present value for projects presentation | Book chapter |
Kahraman et al. (2015) | 2015 | HFSs & Triangular hesitant data sets Interval-valued intuitionistic fuzzy sets & Triangular interval-valued intuitionistic fuzzy sets | Hesitant and intuitionistic fuzzy present worth and annual worth analyses | Article |
Kahraman et al. (2018a) | 2018 | PFSs | Pythagorean fuzzy PW analysis in investments. | Conference paper |
Sarı and Kahraman (2017) | 2017 | Type-2 fuzzy sets | Solid waste collection system for selection between roadside and underground waste bins. | Book chapter |
Aydin et al. (2018) | 2018 | NSs | Investment evaluation problem with present value analysis. | Article |
Kahraman et al. (2018b) | 2018 | OFSs Type-2 fuzzy sets HFSs | Ordinary fuzzy PW analysis, type-2 fuzzy PW analysis, intuitionistic fuzzy PW analysis, and hesitant fuzzy PW analysis | Book chapter |
Aydin and Kabak (2020) | 2020 | NSs | Single valued neutrosophic present and future worth analysis | Article |
Sergi and Sari (2021) | 2021 | FFSs | Fermatean fuzzy net PW analysis | Conference paper |
2 Preliminaries
2.1 Interval-Valued Intuitionistic Fuzzy Sets
Definition 1.
(1)
\[ \tilde{X}=\big\{\big\langle x,\big[{\mu _{\tilde{x}}^{-}},{\mu _{\tilde{x}}^{+}}\big],\big[{\upsilon _{\tilde{x}}^{-}},{\upsilon _{\tilde{x}}^{+}}\big]\big\rangle ;x\in X\big\},\]Definition 2.
(2)
\[\begin{aligned}{}& \tilde{A}\oplus \tilde{B}=\big(\big[{\mu _{\tilde{A}}^{-}}+{\mu _{\tilde{B}}^{-}}-{\mu _{\tilde{A}}^{-}}{\mu _{\tilde{B}}^{-}},{\mu _{\tilde{A}}^{+}}+{\mu _{\tilde{B}}^{+}}-{\mu _{\tilde{A}}^{+}}{\mu _{\tilde{B}}^{+}}\big],\big[{v_{\tilde{A}}^{-}}{v_{\tilde{B}}^{-}},{v_{\tilde{A}}^{+}}{v_{\tilde{B}}^{+}}\big]\big),\end{aligned}\]Definition 3.
(4)
\[ {\tilde{r}_{ij}^{Agg}}=\Bigg\langle \Bigg[{\prod \limits_{j=1}^{n}}{\big({\mu _{j}^{-}}\big)^{{\omega _{j}}}},{\prod \limits_{j=1}^{n}}{\big({\mu _{j}^{+}}\big)^{{\omega _{j}}}}\Bigg],\Bigg[1-{\prod \limits_{j=1}^{n}}{\big(1-{v_{j}^{-}}\big)^{{\omega _{j}}}},1-{\prod \limits_{j=1}^{n}}{\big(1-{v_{j}^{+}}\big)^{{\omega _{j}}}}\Bigg]\Bigg\rangle ,\]Definition 4.
Definition 5.
(6)
\[ S(\tilde{r})=\bigg(\frac{1}{2}\bigg)\times \big({\mu _{\tilde{r}}^{-}}-{v_{\tilde{r}}^{-}}+{\mu _{\tilde{r}}^{+}}-{v_{\tilde{r}}^{+}}\big),\]Definition 6.
Definition 7.
(8)
\[ \textit{AF}(\tilde{r})=\bigg(\frac{1}{2}\bigg)\times \big({\mu _{\tilde{r}}^{-}}+{v_{\tilde{r}}^{-}}+{\mu _{\tilde{r}}^{+}}+{v_{\tilde{r}}^{+}}\big),\]2.2 Circular Intuitionistic Fuzzy Sets
Definition 8.
(9)
\[ {C_{r}}=\big\{\big\langle x,{\mu _{C}}(x),{\nu _{C}}(x);r\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\]Definition 9.
(12)
\[ \left.\big\langle \mu ({C_{i}}),\nu ({C_{i}})\big\rangle =\bigg\langle \frac{{\textstyle\textstyle\sum _{s=1}^{{k_{j}}}}{m_{i,j}}}{{k_{j}}},\frac{{\textstyle\textstyle\sum _{s=1}^{{k_{j}}}}{n_{i,j}}}{{k_{j}}}\bigg\rangle \right.,\](13)
\[ {r_{j}}=\underset{1\leqslant j\leqslant {k_{j}}}{\max }\sqrt{{\big(\mu ({C_{j}})-{m_{i,j}}\big)^{2}}+{\big(\nu ({C_{j}})-{n_{i,j}}\big)^{2}}}.\]Definition 10.
(15)
\[ {L^{\ast }}=\big\{\langle a,b\rangle \hspace{0.1667em}\big|\hspace{0.1667em}a,b\in [0,1]\hspace{2.5pt}\text{\&}\hspace{2.5pt}a+b\leqslant 1\big\}.\](16)
\[ {C_{r}^{\ast }}=\big\{\big\langle x,O\big({\mu _{C}}(x),{\nu _{C}}(x)\big);r\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\]Definition 11.
(17)
\[\begin{aligned}{}& {C_{1}}{\cap _{\min }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,\min \big({\mu _{{C_{1}}}}(x),{\mu _{{C_{2}}}}(x)\big),\max \big({\nu _{{C_{1}}}}(x),{\nu _{{C_{2}}}}(x)\big);\min ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](18)
\[\begin{aligned}{}& {C_{1}}{\cap _{\max }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,\min \big({\mu _{{C_{1}}}}(x),{\mu _{{C_{2}}}}(x)\big),\max \big({\nu _{{C_{1}}}}(x),{\nu _{{C_{2}}}}(x)\big);\max ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](19)
\[\begin{aligned}{}& {C_{1}}{\cup _{\min }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,\max \big({\mu _{{C_{1}}}}(x),{\mu _{{C_{2}}}}(x)\big),\min \big({\nu _{{C_{1}}}}(x),{\nu _{{C_{2}}}}(x)\big);\min ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](20)
\[\begin{aligned}{}& {C_{1}}{\cup _{\max }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,\max \big({\mu _{{C_{1}}}}(x),{\mu _{{C_{2}}}}(x)\big),\min \big({\nu _{{C_{1}}}}(x),{\nu _{{C_{2}}}}(x)\big);\max ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](21)
\[\begin{aligned}{}& {C_{1}}{\oplus _{\min }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,{\mu _{{C_{1}}}}(x)+{\mu _{{C_{2}}}}(x)-{\mu _{{C_{1}}}}(x)\ast {\mu _{{C_{2}}}}(x),{\nu _{{C_{1}}}}(x)\ast {\nu _{{C_{2}}}}(x);\\ {} & \hspace{2em}\hspace{1em}\min ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](22)
\[\begin{aligned}{}& {C_{1}}{\oplus _{\max }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,{\mu _{{C_{1}}}}(x)+{\mu _{{C_{2}}}}(x)-{\mu _{{C_{1}}}}(x)\ast {\mu _{{C_{2}}}}(x),{\nu _{{C_{1}}}}(x)\ast {\nu _{{C_{2}}}}(x);\\ {} & \hspace{2em}\hspace{1em}\max ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](23)
\[\begin{aligned}{}& {C_{1}}{\otimes _{\min }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,{\mu _{{C_{1}}}}(x)\ast {\mu _{{C_{2}}}}(x),{\nu _{{C_{1}}}}(x)+{\nu _{{C_{2}}}}(x)-{\nu _{{C_{1}}}}(x)\ast {\nu _{{C_{2}}}}(x);\\ {} & \hspace{2em}\hspace{1em}\min ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\},\end{aligned}\](24)
\[\begin{aligned}{}& {C_{1}}{\otimes _{\max }}{C_{2}}\\ {} & \hspace{1em}=\big\{\big\langle x,{\mu _{{C_{1}}}}(x)\ast {\mu _{{C_{2}}}}(x),{\nu _{{C_{1}}}}(x)+{\nu _{{C_{2}}}}(x)-{\nu _{{C_{1}}}}(x)\ast {\nu _{{C_{2}}}}(x);\\ {} & \hspace{2em}\hspace{1em}\max ({r_{1}},{r_{2}})\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\in E\big\}.\end{aligned}\]Definition 12.
3 Interval-Valued Intuitionistic Fuzzy PW Analysis
(26)
\[\begin{aligned}{}& {\widetilde{\textit{FC}}_{I}}=\left\{\begin{array}{c}\langle f{c_{1}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\langle f{c_{2}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\dots ,\\ {} \langle f{c_{k}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](27)
\[\begin{aligned}{}& {\widetilde{\textit{AC}}_{I}}=\left\{\begin{array}{c}\langle a{c_{1}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\langle a{c_{2}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\dots ,\\ {} \langle a{c_{k}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](28)
\[\begin{aligned}{}& {\widetilde{\textit{AB}}_{I}}=\left\{\begin{array}{c}\langle a{b_{1}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\langle a{b_{2}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\dots ,\\ {} \langle a{b_{k}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](29)
\[\begin{aligned}{}& {\widetilde{\textit{SV}}_{I}}=\left\{\begin{array}{c}\langle s{v_{1}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\langle s{v_{2}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\dots ,\\ {} \langle s{v_{k}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](30)
\[\begin{aligned}{}& {\tilde{\iota }_{I}}=\left\{\begin{array}{c}\langle {i_{1}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\langle {i_{2}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\dots ,\\ {} \langle {i_{k}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](31)
\[\begin{aligned}{}& {\tilde{n}_{I}}=\left\{\begin{array}{c}\langle {n_{1}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\langle {n_{2}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle ,\dots ,\\ {} \langle {n_{k}},{\mathrm{IVFN}_{1}},\dots ,{\mathrm{IVFN}_{m}}\rangle \end{array}\right\}.\end{aligned}\](32)
\[ {\widetilde{\textit{PW}}_{I}}=-{\widetilde{\textit{FC}}_{I}}-{\widetilde{\textit{AC}}_{I}}\bigg[\frac{{(1+{\tilde{\iota }_{I}})^{{\tilde{n}_{I}}}}-1}{{\tilde{\iota }_{I}}{(1+{\tilde{\iota }_{I}})^{{\tilde{n}_{I}}}}}\bigg]+{\widetilde{\textit{AB}}_{I}}\bigg[\frac{{(1+{\tilde{\iota }_{I}})^{{\tilde{n}_{I}}}}-1}{{\tilde{\iota }_{I}}{(1+{\tilde{\iota }_{I}})^{{\tilde{n}_{I}}}}}\bigg]+{\widetilde{\textit{SV}}_{I}}{(1+{\tilde{\iota }_{I}})^{-I}},\]4 Circular Intuitionistic Fuzzy PW Analysis
(33)
\[\begin{aligned}{}& {\widetilde{\textit{FC}}_{\textit{CIF}}}=\left\{\begin{array}{c}\langle f{c_{1}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\langle f{c_{2}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\dots ,\\ {} \langle f{c_{k}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](34)
\[\begin{aligned}{}& {\widetilde{\textit{AC}}_{\textit{CIF}}}=\left\{\begin{array}{c}\langle a{c_{1}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\langle a{c_{2}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\dots ,\\ {} \langle a{c_{k}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](35)
\[\begin{aligned}{}& {\widetilde{\textit{AB}}_{\textit{CIF}}}=\left\{\begin{array}{c}\langle a{b_{1}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\langle a{b_{2}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\dots ,\\ {} \langle a{b_{k}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](36)
\[\begin{aligned}{}& {\widetilde{\textit{SV}}_{\textit{CIF}}}=\left\{\begin{array}{c}\langle s{v_{1}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\langle s{v_{2}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\dots ,\\ {} \langle s{v_{k}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](37)
\[\begin{aligned}{}& {\tilde{\iota }_{\textit{CIF}}}=\left\{\begin{array}{c}\langle {i_{1}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\langle {i_{2}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\dots ,\\ {} \langle {i_{k}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](38)
\[\begin{aligned}{}& {\tilde{n}_{\textit{CIF}}}=\left\{\begin{array}{c}\langle {n_{1}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\langle {n_{2}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle ,\dots ,\\ {} \langle {n_{k}},{\mathrm{CIFN}_{1}},\dots ,{\mathrm{CIFN}_{m}}\rangle \end{array}\right\},\end{aligned}\](39)
\[\begin{aligned}{}{\widetilde{\textit{PW}}_{\mathit{CIF}}}& =-{\widetilde{\textit{FC}}_{\mathit{CIF}}}-{\widetilde{\textit{AC}}_{\mathit{CIF}}}\bigg[\frac{{(1+{\tilde{\iota }_{\mathit{CIF}}})^{{\tilde{n}_{\mathit{CIF}}}}}-1}{{\tilde{\iota }_{\mathit{CIF}}}{(1+{\tilde{\iota }_{\textit{ICIF}}})^{{\tilde{n}_{I}}}}}\bigg]\\ {} & \hspace{1em}+{\tilde{\textit{AB}}_{\mathit{CIF}}}\bigg[\frac{{(1+{\tilde{\iota }_{\mathit{CIF}}})^{{\tilde{n}_{\mathit{CIF}}}}}-1}{{\tilde{\iota }_{\mathit{CIF}}}{(1+{\tilde{\iota }_{\mathit{CIF}}})^{{\tilde{n}_{\mathit{CIF}}}}}}\bigg]+{\widetilde{\textit{SV}}_{\mathit{CIF}}}{(1+{\tilde{\iota }_{\mathit{CIF}}})^{-I}},\end{aligned}\]5 Application
Table 2
Parameter | Expert | w | Alternative | $\langle [{\mu ^{-}},{\mu ^{+}}],[{\vartheta ^{-}},{\vartheta ^{+}}]\rangle $ |
First cost | E1 | 0.5 | $[200000,250000]$ | $\langle [0.7,0.8],[0.1,0.2]\rangle $ |
0.2 | $[220000,260000]$ | $\langle [0.6,0.7],[0.05,0.25]\rangle $ | ||
0.3 | $[240000,270000]$ | $\langle [0.5,0.9],[0.05,0.1]\rangle $ | ||
E2 | 0.25 | $[200000,250000]$ | $\langle [0.7,0.8],[0.1,0.2]\rangle $ | |
0.45 | $[220000,260000]$ | $\langle [0.6,0.7],[0.05,0.25]\rangle $ | ||
0.3 | $[240000,270000]$ | $\langle [0.5,0.9],[0.05,0.1]\rangle $ | ||
E3 | 0.35 | $[200000,250000]$ | $\langle [0.7,0.8],[0.1,0.2]\rangle $ | |
0.3 | $[220000,260000]$ | $\langle [0.6,0.7],[0.05,0.25]\rangle $ | ||
0.35 | $[240000,270000]$ | $\langle [0.5,0.9],[0.05,0.1]\rangle $ | ||
Annual benefit | E1 | 0.5 | $[40000,50000]$ | $\langle [0.8,0.85],[0.1,0.15]\rangle $ |
0.2 | $[45000,55000]$ | $\langle [0.9,0.95],[0,0.05]\rangle $ | ||
0.3 | $[50000,60000]$ | $\langle [0.8,0.9],[0.05,0.1]\rangle $ | ||
E2 | 0.25 | $[40000,50000]$ | $\langle [0.8,0.85],[0.1,0.15]\rangle $ | |
0.45 | $[45000,55000]$ | $\langle [0.9,0.95],[0,0.05]\rangle $ | ||
0.3 | $[50000,60000]$ | $\langle [0.8,0.85],[0.1,0.15]\rangle $ | ||
E3 | 0.35 | $[40000,50000]$ | $\langle [0.8,0.85],[0.1,0.15]\rangle $ | |
0.3 | $[45000,55000]$ | $\langle [0.9,0.95],[0,0.05]\rangle $ | ||
0.35 | $[50000,60000]$ | $\langle [0.8,0.85],[0.1,0.15]\rangle $ | ||
Annual cost | E1 | 0.5 | $[10000,20000]$ | $\langle [0.7,0.8],[0.1,0.2]\rangle $ |
0.2 | $[15000,25000]$ | $\langle [0.9,0.95],[0,0.05]\rangle $ | ||
0.3 | $[20000,30000]$ | $\langle [0.7,0.85],[0.1,0.15]\rangle $ | ||
E2 | 0.25 | $[10000,20000]$ | $\langle [0.7,0.9],[0.0,0.1]\rangle $ | |
0.45 | $[15000,25000]$ | $\langle [0.9,0.95],[0,0.05]\rangle $ | ||
0.3 | $[20000,30000]$ | $\langle [0.7,0.85],[0.1,0.15]\rangle $ | ||
E3 | 0.35 | $[10000,20000]$ | $\langle [0.6,0.7],[0.1,0.3]\rangle $ | |
0.3 | $[15000,25000]$ | $\langle [0.7,0.8],[0.05,0.2]\rangle $ | ||
0.35 | $[20000,30000]$ | $\langle [0.85,0.9],[0.05,0.1]\rangle $ | ||
Salvage value | E1 | 0.5 | $[80000,100000]$ | $\langle [0.65,0.7],[0.15,0.3]\rangle $ |
0.2 | $[90000,110000]$ | $\langle [0.75,0.80],[0.15,0.2]\rangle $ | ||
0.3 | $[100000,120000]$ | $\langle [0.7,0.75],[0.1,0.25]\rangle $ | ||
E2 | 0.25 | $[80000,100000]$ | $\langle [0.60,0.7],[0.1,0.15]\rangle $ | |
0.45 | $[90000,110000]$ | $\langle [0.8,0.90],[0.05,0.10]\rangle $ | ||
0.3 | $[100000,120000]$ | $\langle [0.7,0.85],[0.1,0.15]\rangle $ | ||
E3 | 0.35 | $[80000,100000]$ | $\langle [0.55,0.60],[0.2,0.40]\rangle $ | |
0.3 | $[90000,110000]$ | $\langle [0.65,0.75],[0.15,0.25]\rangle $ | ||
0.35 | $[100000,120000]$ | $\langle [0.75,0.85],[0.1,0.15]\rangle $ | ||
Interest rate | E1 | 0.5 | $[0.08,0.10]$ | $\langle [0.6,0.65],[0.2,0.3]\rangle $ |
0.2 | $[0.09,0.11]$ | $\langle [0.7,0.75],[0.15,0.20]\rangle $ | ||
0.3 | $[0.10,0.12]$ | $\langle [0.6,0.65],[0.1,0.25]\rangle $ | ||
E2 | 0.25 | $[0.08,0.10]$ | $\langle [0.6,0.7],[0.2,0.3]\rangle $ | |
0.45 | $[0.09,0.11]$ | $\langle [0.7,0.8],[0.15,0.2]\rangle $ | ||
0.3 | $[0.10,0.12]$ | $\langle [0.6,0.9],[0.05,0.10]\rangle $ | ||
E3 | 0.35 | $[0.08,0.10]$ | $\langle [0.6,0.7],[0.2,0.3]\rangle $ | |
0.3 | $[0.09,0.11]$ | $\langle [0.7,0.8],[0.15,0.2]\rangle $ | ||
0.35 | $[0.10,0.12]$ | $\langle [0.6,0.8],[0.1,0.2]\rangle $ | ||
Life | E1 | 0.5 | $[20,23]$ | $\langle [0.6,0.75],[0.2,0.25]\rangle $ |
0.2 | $[21,22]$ | $\langle [0.7,0.85],[0.1,0.15]\rangle $ | ||
0.3 | $[22,23]$ | $\langle [0.6,0.7],[0.15,0.3]\rangle $ | ||
E2 | 0.25 | $[20,24]$ | $\langle [0.6,0.8],[0.1,0.2]\rangle $ | |
0.45 | $[22,25]$ | $\langle [0.7,0.8],[0.1,0.2]\rangle $ | ||
0.3 | $[24,26]$ | $\langle [0.8,0.85],[0.1,0.15]\rangle $ | ||
E3 | 0.35 | $[19,23]$ | $\langle [0.6,0.7],[0.1,0.3]\rangle $ | |
0.3 | $[21,25]$ | $\langle [0.7,0.8],[0.1,0.15]\rangle $ | ||
0.35 | $[23,27]$ | $\langle [0.6,0.8],[0.15,0.2]\rangle $ |
Table 3
Parameter | Experts | Experts’ weights | Weighted interval-values | Aggregated membership functions $\langle [{\mu ^{-}},{\mu ^{+}}],[{\vartheta ^{-}},{\vartheta ^{+}}]\rangle $ | |
FC | E1 | 0.4 | 216000 | 258000 | $\langle [0.614,0.807],[0.075,0.182]\rangle $ |
E2 | 0.25 | 221000 | 260500 | $\langle [0.590,0.780],[0.063,0.195]\rangle $ | |
E3 | 0.35 | 220000 | 260000 | $\langle [0.594,0.801],[0.068,0.182]\rangle $ | |
AB | E1 | 0.4 | 44000 | 54000 | $\langle [0.819,0.884],[0.066,0.116]\rangle $ |
E2 | 0.25 | 45250 | 55250 | $\langle [0.844,0.894],[0.056,0.106]\rangle $ | |
E3 | 0.35 | 45000 | 55000 | $\langle [0.829,0.879],[0.071,0.121]\rangle $ | |
AC | E1 | 0.4 | 14000 | 24000 | $\langle [0.736,0.843],[0.081,0.157]\rangle $ |
E2 | 0.25 | 15250 | 25250 | $\langle [0.784,0.906],[0.031,0.094]\rangle $ | |
E3 | 0.35 | 15000 | 25000 | $\langle [0.710,0.796],[0.068,0.204]\rangle $ | |
SV | E1 | 0.4 | 88000 | 108000 | $\langle [0.684,0.734],[0.135,0.266]\rangle $ |
E2 | 0.25 | 90500 | 110500 | $\langle [0.715,0.831],[0.078,0.128]\rangle $ | |
E3 | 0.35 | 90000 | 78500 | $\langle [0.645,0.725],[0.151,0.275]\rangle $ | |
IR | E1 | 0.4 | 0.088 | 0.108 | $\langle [0.619,0.669],[0.161,0.266]\rangle $ |
E2 | 0.25 | 0.091 | 0.111 | $\langle [0.643,0.802],[0.134,0.198]\rangle $ | |
E3 | 0.35 | 0.09 | 0.11 | $\langle [0.628,0.763],[0.151,0.237]\rangle $ | |
n | E1 | 0.4 | 20.8 | 22.8 | $\langle [0.619,0.753],[0.166,0.247]\rangle $ |
E2 | 0.25 | 22.1 | 25.05 | $\langle [0.701,0.815],[0.113,0.185]\rangle $ | |
E3 | 0.35 | 21 | 25 | $\langle [0.628,0.763],[0.118,0.223]\rangle $ |
Table 4
Parameter | Expected interval-values | Aggregated membership functions |
$\langle [{\mu ^{-}},{\mu ^{+}}],[{\vartheta ^{-}},{\vartheta ^{+}}]\rangle $ | ||
FC | $[218650;259325]$ | $\langle [0.601,0.798],[0.070,0.185]\rangle $ |
AB | $[44662.5;54,662.5]$ | $\langle [0.829,0.885],[0.065,0.115]\rangle $ |
AC | $[11862.5;24,662.5]$ | $\langle [0.738,0.841],[0.064,0.159]\rangle $ |
SV | $[89325;98300]$ | $\langle [0.677,0.754],[0.127,0.237]\rangle $ |
IR | $[0.089;0.109]$ | $\langle [0.628,0.733],[0.151,0.239]\rangle $ |
Life | $[21195,24.133]$ | $\langle [0.642,0.772],[0.136,0.223]\rangle $ |
Table 5
Parameters | Experts | W | Alternative | Membership function | Within aggregated membership functions ($\mu ,\vartheta $) | r | ${r_{\max }}$ |
First Cost | E1 | 0.5 | $[200000,250000]$ | $(0.6,0.3)$ | $(0.648,0.261)$ | 0.486 | 0.627 |
0.2 | $[220000,260000]$ | $(0.7,0.25)$ | 0.592 | ||||
0.3 | $[240000,270000]$ | $(0.7,0.2)$ | 0.627 | ||||
E2 | 0.25 | $[200000,250000]$ | $(0.8,0.2)$ | $(0.780,0.195)$ | 0.020 | 0.153 | |
0.45 | $[220000,260000]$ | $(0.7,0.25)$ | 0.097 | ||||
0.3 | $[240000,270000]$ | $(0.9,0.1)$ | 0.153 | ||||
E3 | 0.35 | $[200000,250000]$ | $(0.8,0.2)$ | $(0.801,0.182)$ | 0.018 | 0.129 | |
0.3 | $[220000,260000]$ | $(0.7,0.25)$ | 0.122 | ||||
0.35 | $[240000,270000]$ | $(0.9,0.1)$ | 0.129 | ||||
Annual Benefit | E1 | 0.5 | $[40000,50000]$ | $(0.85,0.15)$ | $(0.884,0.116)$ | 0.048 | 0.093 |
0.2 | $[45000,55000]$ | $(0.95,0.05)$ | 0.093 | ||||
0.3 | $[50000,60000]$ | $(0.9,0.1)$ | 0.022 | ||||
E2 | 0.25 | $[40000,50000]$ | $(0.85,0.15)$ | $(0.894,0.106)$ | 0.062 | 0.080 | |
0.45 | $[45000,55000]$ | $(0.95,0.05)$ | 0.080 | ||||
0.3 | $[50000,60000]$ | $(0.85,0.15)$ | 0.062 | ||||
E3 | 0.35 | $[40000,50000]$ | $(0.85,0.15)$ | $(0.879,0.121)$ | 0.041 | 0.080 | |
0.3 | $[45000,55000]$ | $(0.95,0.05)$ | 0.101 | ||||
0.35 | $[50000,60000]$ | $(0.85,0.15)$ | 0.041 | ||||
Annual Cost | E1 | 0.5 | $[10000,20000]$ | $(0.8,0.2)$ | $(0.843,0.157)$ | 0.061 | 0.151 |
0.2 | $[15000,25000]$ | $(0.95,0.05)$ | 0.151 | ||||
0.3 | $[20000,30000]$ | $(0.85,0.15)$ | 0.010 | ||||
E2 | 0.25 | $[10000,20000]$ | $(0.9,0.1)$ | $(0.906,0.094)$ | 0.100 | 0.160 | |
0.45 | $[15000,25000]$ | $(0.95,0.05)$ | 0.066 | ||||
0.3 | $[20000,30000]$ | $(0.85,0.15)$ | 0.160 | ||||
E3 | 0.35 | $[10000,20000]$ | $(0.7,0.3)$ | $(0.796,0.204)$ | 0.315 | 0.315 | |
0.3 | $[15000,25000]$ | $(0.8,0.2)$ | 0.200 | ||||
0.35 | $[20000,30000]$ | $(0.9,0.1)$ | 0.145 | ||||
Salvage Value | E1 | 0.5 | $[80000,100000]$ | $(0.7,0.3)$ | $(0.734,0.266)$ | 0.048 | 0.093 |
0.2 | $[90000,110000]$ | $(0.8,0.2)$ | 0.093 | ||||
0.3 | $[100000,120000]$ | $(0.75,0.25)$ | 0.023 | ||||
E2 | 0.25 | $[80000,100000]$ | $(0.7,0.15)$ | $(0.831,0.128)$ | 0.133 | 0.133 | |
0.45 | $[90000,110000]$ | $(0.9,0.1)$ | 0.075 | ||||
0.3 | $[100000,120000]$ | $(0.85,0.15)$ | 0.029 | ||||
E3 | 0.35 | $[80000,100000]$ | $(0.6,0.4)$ | $(0.725,0.275)$ | 0.176 | 0.177 | |
0.3 | $[90000,110000]$ | $(0.75,0.25)$ | 0.036 | ||||
0.35 | $[100000,120000]$ | $(0.85,0.15)$ | 0.177 | ||||
Interest Rate | E1 | 0.5 | $[0.08,0.10]$ | $(0.65,0.3)$ | $(0.669,0.266)$ | 0.039 | 0.105 |
0.2 | $[0.09,0.11]$ | $(0.75,0.2)$ | 0.105 | ||||
0.3 | $[0.10,0.12]$ | $(0.65,0.25)$ | 0.025 | ||||
E2 | 0.25 | $[0.08,0.10]$ | $(0.7,0.3)$ | $(0.802,0.198)$ | 0.144 | 0.144 | |
0.45 | $[0.09,0.11]$ | $(0.8,0.2)$ | 0.002 | ||||
0.3 | $[0.10,0.12]$ | $(0.9,0.1)$ | 0.139 | ||||
E3 | 0.35 | $[0.08,0.10]$ | $(0.7,0.3)$ | $(0.763,0.237)$ | 0.090 | 0.090 | |
0.3 | $[0.09,0.11]$ | $(0.8,0.2)$ | 0.052 | ||||
0.35 | $[0.10,0.12]$ | $(0.8,0.2)$ | 0.052 | ||||
Life | E1 | 0.5 | $[20,23]$ | $(0.7,0.3)$ | $(0.675,0.281)$ | 0.032 | 0.085 |
0.2 | $[21,22]$ | $(0.65,0.2)$ | 0.085 | ||||
0.3 | $[22,23]$ | $(0.65,0.3)$ | 0.031 | ||||
E2 | 0.25 | $[20,24]$ | $(0.7,0.3)$ | $(0.685,0.257)$ | 0.046 | 0.059 | |
0.45 | $[22,25]$ | $(0.7,0.2)$ | 0.059 | ||||
0.3 | $[24,26]$ | $(0.65,0.3)$ | 0.055 | ||||
E3 | 0.35 | $[19,23]$ | $(0.7,0.3)$ | $(0.682,0.271)$ | 0.034 | 0.074 | |
0.3 | $[21,25]$ | $(0.7,0.2)$ | 0,074 | ||||
0.35 | $[23,27]$ | $(0.65,0.3)$ | 0,043 |
Table 6
Parameters | Expected parameters | Within aggregated membership functions | ${r_{\max }}$ |
FC | $[218,650;259,325]$ | $(0.731,0.218)$ | 0.627 |
AB | $[44,662.5;54,662.5]$ | $(0.885,0.115)$ | 0.101 |
AC | $[11,862.5;24,662.5]$ | $(0.841,0.159)$ | 0.315 |
SV | $[89.325;98.300]$ | $(0.754,0.237)$ | 0.177 |
IR | $[0.089;0.109]$ | $(0.733,0.239)$ | 0.144 |
Life | $[21.195;24.133]$ | $(0.680,0.272)$ | 0.085 |
Table 7
Parameters | Optimistic membership functions | Pessimistic membership functions |
FC | $(1,0)$ | $(0.104,0.845)$ |
AB | $(0.985,0.015)$ | $(0.784,0.216)$ |
AC | $(1,0)$ | $(0.526,0.474)$ |
SV | $(0.931,0.060)$ | $(0.577,0.414)$ |
IR | $(0.877,0.096)$ | $(0.589,0.383)$ |
Life | $(0.764,0.187)$ | $(0.595,0.356)$ |
Membership functions (Max μ, Min ϑ for optimistic), (Max ϑ, Min μ for pessimistic) | $(1,0)$ | $(0.104,0.845)$ |
Table 8
Parameters | Expected interval-values | Midpoints |
FC | $[218,650;259,325]$ | 238,987.500 |
AB | $[44,662.5;54,662.5]$ | 49,662.500 |
AC | $[11,862.5;24,662.5]$ | 18,262.500 |
SV | $[89,325;98,300]$ | 93,812.500 |
IR | $[0.089;0.109]$ | 0.099 |
Life | $[21.195;24.133]$ | 22.664 |