Pub. online:8 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 203–225
Abstract
Energy conservation and emission reduction are important policies vigorously promoted in China. With the continuous popularization of the concept of green transportation, electric vehicles have become a green transportation tool with good development prospects, greatly reducing the pressure on the environment and resources caused by rapid economic growth. The development status of electric vehicles has a significant impact on urban energy security, environmental protection, and sustainable development in China. With the widespread application of new energy vehicles, charging piles have become an important auxiliary infrastructure necessary for the development of electric vehicles. They have significant social and economic benefits, so it is imperative to build electric vehicle charging piles. There are many factors to consider in the scientific layout of electric vehicle charging stations, and the location selection problem of electric vehicle charging stations is a multiple-attribute group decision-making (MAGDM) problem. Recently, the Combined Compromise Solution (CoCoSo) technique and CRITIC technique have been utilized to deal with MAGDM issues. Spherical fuzzy sets (SFSs) can uncover the uncertainty and fuzziness in MAGDM more effectively and deeply. In this paper, on basis of CoCoSo technique, a novel spherical fuzzy number CoCoSo (SFN-CoCoSo) technique based on spherical fuzzy number cosine similarity measure (SFNCSM) and spherical fuzzy number Euclidean distance (SFNED) is conducted for dealing with MAGDM. Moreover, when the attribute weights are completely unknown, the CRITIC technique is extended to SFSs to acquire the attribute weights based on the SFNCSM and SFNED. Finally, the SFN-CoCoSo technique is utilized for location selection problem of electric vehicle charging stations to prove practicability of the developed technique and compare the SFN-CoCoSo technique with existing techniques to further demonstrate its superiority.
Pub. online:28 Nov 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 857–899
Abstract
T-spherical fuzzy (T-SF) sets furnish a constructive and flexible manner to manifest higher-order fuzzy information in realistic decision-making contexts. The objective of this research article is to deliver an original multiple-criteria choice method that utilizes a correlation-focused approach toward computational intelligence in uncertain decision-making activities with T-spherical fuzziness. This study introduces the notion of T-SF data-driven correlation measures that are predicated on two types of the square root function and the maximum function. The purpose of these measures is to exhibit the overall desirability of choice options across all performance criteria using T-SF comprehensive correlation indices within T-SF decision environments. This study executes an application for location selection and demonstrates the effectiveness and suitability of the developed techniques in T-SF uncertain conditions. The comparative analysis and outcomes substantiate the justifiability and the strengths of the propounded methodology in pragmatic situations under T-SF uncertainties.
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 713–729
Abstract
In recent years, the multi-attribute group decision making (MAGDM) problem has received extensive attention and research, and it plays an increasingly important role in our daily life. Fuzzy environment provides a more accurate decision-making environment for decision makers, so the research on MAGDM problem under fuzzy environment sets (SFSs) has become popular. Taxonomy method has become an effective method to solve the problem of MAGDM. It also plays an important role in solving the problem of MAGDM combined with other environments. In this paper, a new method for MAGDM is proposed by combining Taxonomy method with SFSs (SF-Taxonomy). In addition, we use entropy weight method to calculate the objective weight of attributes, so that more objective results can be produced when solving MAGDM problems.
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 865–886
Abstract
Picture fuzzy sets (PFSs) utilize the positive, neutral, negative and refusal membership degrees to describe the behaviours of decision-makers in more detail. In this article, we expound the application of extended TODIM based on cumulative prospect theory under picture fuzzy multiple attribute group decision making (MAGDM). In addition, we adopt Information Entropy, which is used to ascertain the weighting vector of attributes to improve the availability of the TODIM method. At last, we exercise the improved TODIM into a numerical case for super market location and testify the effectiveness of this new method by comparing its results with other methods’ results.
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 195–216
Abstract
In this paper, the CODAS (Combinative Distance-based Assessment) is utilized to address some MAGDM issues by using picture 2-tuple linguistic numbers (P2TLNs). At first, some essential concepts of picture 2-tuple linguistic sets (P2TLSs) are briefly reviewed. Then, the CODAS method with P2TLNs is constructed and all calculating procedures are simply depicted. Eventually, an empirical application of green supplier selection has been offered to demonstrate this novel method and some comparative analysis between the CODAS method with P2TLNs and several methods are also made to confirm the merits of the developed method.