1 Introduction
2 Preliminaries
2.1 Weighted Archimedean t-Norms and t-Conorms
Definition 2.1 (See Klement et al., 2000).
Definition 2.2 (See Klement et al., 2000).
Definition 2.3 (See Klement et al., 2000).
Definition 2.4 (See Klement et al., 2000).
2.2 Intuitionistic Fuzzy Sets
Definition 2.5 (See Atanassov, 1986).
Definition 2.7 (See Beliakov et al., 2011; Xia et al., 2012).
-
(1) $ {\alpha _{1}}\oplus {\alpha _{2}}=(1-{g^{-1}}(g(1-{\mu _{{\alpha _{1}}}})+g(1-{\mu _{{\alpha _{2}}}})),{g^{-1}}(g({\nu _{{\alpha _{1}}}})+g({\nu _{{\alpha _{2}}}})))$;
-
(2) $ {\alpha _{1}}\otimes {\alpha _{2}}=({g^{-1}}(g({\mu _{{\alpha _{1}}}})+g({\mu _{{\alpha _{2}}}})),1-{g^{-1}}(g(1-{\nu _{{\alpha _{1}}}})+g(1-{\nu _{{\alpha _{2}}}})))$;
-
(3) $ \lambda \alpha =(1-{g^{-1}}(\lambda g(1-{\mu _{\alpha }})),{g^{-1}}(\lambda g({\nu _{\alpha }})))$, $ \lambda >0$;
-
(4) $ {\alpha ^{\lambda }}=({g^{-1}}(\lambda g({\mu _{\alpha }})),1-{g^{-1}}(\lambda g(1-{\nu _{\alpha }})))$, $ \lambda >0$;
-
(3) $ {\alpha ^{c}}=({\nu _{\alpha }},{\mu _{\alpha }})$.
Definition 2.8 (See Xia et al., 2012).
Definition 2.9 (See Xia et al., 2012).
(1)
\[ {\text{IFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{H}}}}}}(\alpha )=\big({T_{\omega ,{g_{\gamma }^{H}}}}({\mu _{{\alpha _{j}}}}),1-{T_{\omega ,{g_{\gamma }^{H}}}}(1-{\nu _{{\alpha _{j}}}})\big),\]Definition 2.10 (See Beliakov and James, 2013).
3 Symmetric Intuitionistic Fuzzy Weighted Mean Operators w.r.t. Weighted Archimedean t-Norms and t-Conorms
3.1 Symmetric Intuitionistic Fuzzy Weighted Mean Operators w.r.t. Weighted Archimedean t-Norms
Lemma 3.1.
Proof.
Definition 3.2.
(5)
\[ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,g}}}}(\alpha )=\left(\frac{{T_{\omega ,g}}({\mu _{\alpha }})}{{T_{\omega ,g}}({\mu _{\alpha }})+{T_{\omega ,g}}(1-{\mu _{\alpha }})},\frac{{T_{\omega ,g}}({\nu _{\alpha }})}{{T_{\omega ,g}}({\nu _{\alpha }})+{T_{\omega ,g}}(1-{\nu _{\alpha }})}\right),\]Proposition 3.3.
-
(1) If all $ {\alpha _{j}}$ are equal, i.e. $ {\alpha _{j}}=\delta =({\mu _{\delta }},{\nu _{\delta }})$, for all j, then $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,g}}}}(\alpha )=\delta $;
-
(2) If $ {\alpha _{j}}\leqslant {\beta _{j}}$ for all j, then $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,g}}}}(\alpha )\leqslant {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,g}}}}(\beta )$;
-
(3) Let $ {\alpha ^{-}}=(\min ({\mu _{\alpha }}),\max ({\nu _{\alpha }}))$ and $ {\alpha ^{+}}=(\max ({\mu _{\alpha }}),\min ({\nu _{{\alpha _{j}}}}))$, then $ {\alpha ^{-}}\leqslant {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,g}}}}(\alpha )\leqslant {\alpha ^{+}}$.
Proof.
-
(1) If $ g(t)={g_{\gamma }^{H}}(t)$, then the SIFWM $ {^{{T_{\omega ,g}}}}$ operator is reduced to the following form:
(6)
\[ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{H}}}}}}(\alpha )=\left(\hspace{-0.1667em}\frac{{T_{\omega ,{g_{\gamma }^{H}}}}({\mu _{\alpha }})}{{T_{\omega ,{g_{\gamma }^{H}}}}({\mu _{\alpha }})+{T_{\omega ,{g_{\gamma }^{H}}}}(1-{\mu _{\alpha }})},\frac{{T_{\omega ,{g_{\gamma }^{H}}}}({\nu _{\alpha }})}{{T_{\omega ,{g_{\gamma }^{H}}}}({\nu _{\alpha }})+{T_{\omega ,{g_{\gamma }^{H}}}}(1-{\nu _{\alpha }})}\hspace{-0.1667em}\right).\]\[\begin{array}{r@{\hskip4.0pt}c@{\hskip4.0pt}l}\displaystyle \underset{\gamma \to \infty }{\lim }{T_{\omega ,{g_{\gamma }^{H}}}}(x)& \displaystyle =& \displaystyle \underset{\gamma \to \infty }{\lim }\frac{\gamma }{{\textstyle\textstyle\prod _{j=1}^{n}}{(\frac{\gamma }{{x_{j}}}+1-\gamma )^{{\omega _{j}}}}+\gamma -1}\\ {} & \displaystyle =& \displaystyle \underset{\gamma \to \infty }{\lim }{\bigg(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{(\frac{\gamma }{{x_{j}}}+1-\gamma )^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{\gamma ^{{\omega _{j}}}}}+\frac{\gamma -1}{\gamma }\bigg)^{-1}}\\ {} & \displaystyle =& \displaystyle \underset{\gamma \to \infty }{\lim }{\bigg({\prod \limits_{j=1}^{n}}{\bigg(\frac{1}{{x_{j}}}+\frac{1-\gamma }{\gamma }\bigg)^{{\omega _{j}}}}+\frac{\gamma -1}{\gamma }\bigg)^{-1}}\\ {} & \displaystyle =& \displaystyle {\bigg({\prod \limits_{j=1}^{n}}{\bigg(\frac{1}{{x_{j}}}-1\bigg)^{{\omega _{j}}}}+1\bigg)^{-1}},\end{array}\]thus we have(7)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\infty }^{H}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\mu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}},\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\nu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}\right),\end{array}\] -
(2) If $ g(t)={g_{\gamma }^{SS}}(t)$, then the SIFWM $ {^{{T_{\omega ,g}}}}$ operator is reduced to the following form:
(9)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{SS}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{T_{\omega ,{g_{\gamma }^{SS}}}}({\mu _{\alpha }})}{{T_{\omega ,{g_{\gamma }^{SS}}}}({\mu _{\alpha }})+{T_{\omega ,{g_{\gamma }^{SS}}}}(1-{\mu _{\alpha }})},\frac{{T_{\omega ,{g_{\gamma }^{SS}}}}({\nu _{\alpha }})}{{T_{\omega ,{g_{\gamma }^{SS}}}}({\nu _{\alpha }})+{T_{\omega ,{g_{\gamma }^{SS}}}}(1\hspace{-0.1667em}-\hspace{-0.1667em}{\nu _{\alpha }})}\right).\end{array}\]\[\begin{array}{l}\displaystyle \underset{\gamma \to \infty }{\lim }{T_{\omega ,{g_{\gamma }^{SS}}}}(x)=\underset{\gamma \to \infty }{\lim }{\Big({\sum \limits_{j=1}^{n}}{\omega _{j}}{x_{j}^{\gamma }}\Big)^{\frac{1}{\gamma }}}=\underset{\gamma \to \infty }{\lim }{e^{\frac{\ln \Big({\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{x_{j}^{\gamma }}\Big)}{\gamma }}}\\ {} \displaystyle \hspace{1em}=\underset{\gamma \to \infty }{\lim }{e^{\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{x_{j}^{\gamma }}\ln {x_{j}}}{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{x_{j}^{\gamma }}}}}={e^{{\lim \nolimits_{\gamma \to \infty }}\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{x_{j}^{\gamma }}\ln {x_{j}}}{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{x_{j}^{\gamma }}}}}={e^{{\lim \nolimits_{\gamma \to \infty }}\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{(\frac{{x_{j}}}{{x_{k}}})^{\gamma }}\ln {x_{j}}}{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{(\frac{{x_{j}}}{{x_{k}}})^{\gamma }}}}}\\ {} \displaystyle \hspace{1em}={e^{\frac{{\omega _{k}}\ln {x_{k}}}{{\omega _{k}}}}}={x_{k}},\end{array}\]thus we get(10)
\[ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\infty }^{SS}}}}}}(\alpha )=\left(\frac{\max ({\mu _{\alpha }})}{\max ({\mu _{\alpha }})+\max (1-{\mu _{\alpha }})},\frac{\max ({\nu _{\alpha }})}{\max ({\nu _{\alpha }})+\max (1-{\nu _{\alpha }})}\right).\](11)
\[ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{-\infty }^{SS}}}}}}(\alpha )=\left(\frac{\min ({\mu _{\alpha }})}{\min ({\mu _{\alpha }})+\min (1-{\mu _{\alpha }})},\frac{\min ({\nu _{\alpha }})}{\min ({\nu _{\alpha }})+\min (1-{\nu _{\alpha }})}\right),\](12)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{0}^{SS}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\mu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}},\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\nu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}\right).\end{array}\] -
(3) If $ g(t)={g_{\gamma }^{D}}(t)$, then the SIFWM $ {^{{T_{\omega ,g}}}}$ operator is reduced to the following case:
(13)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{D}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{T_{\omega ,{g_{\gamma }^{D}}}}({\mu _{\alpha }})}{{T_{\omega ,{g_{\gamma }^{D}}}}({\mu _{\alpha }})+{T_{\omega ,{g_{\gamma }^{D}}}}(1-{\mu _{\alpha }})},\frac{{T_{\omega ,{g_{\gamma }^{D}}}}({\nu _{\alpha }})}{{T_{\omega ,{g_{\gamma }^{D}}}}({\nu _{\alpha }})+{T_{\omega ,{g_{\gamma }^{D}}}}(1-{\nu _{\alpha }})}\right).\end{array}\]\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{1}^{D}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{T_{\omega ,{g_{1}^{D}}}}({\mu _{\alpha }})}{{T_{\omega ,{g_{1}^{D}}}}({\mu _{\alpha }})+{T_{\omega ,{g_{1}^{D}}}}(1-{\mu _{\alpha }})},\frac{{T_{\omega ,{g_{1}^{D}}}}({\nu _{\alpha }})}{{T_{\omega ,{g_{1}^{D}}}}({\nu _{\alpha }})+{T_{\omega ,{g_{1}^{D}}}}(1-{\nu _{\alpha }})}\right),\end{array}\]where $ {T_{\omega ,{g_{1}^{D}}}}(x)={({\textstyle\sum _{j=1}^{n}}{\omega _{j}}{x_{j}^{-1}})^{-1}}$. Now, we consider the case for $ \gamma \to \infty $. Notice that\[ \underset{\gamma \to \infty }{\lim }{\big({x_{j}^{-1}}-1\big)^{\gamma }}=\left\{\begin{array}{l@{\hskip4.0pt}l}\infty ,\hspace{1em}& {x_{j}}<\frac{1}{2},\\ {} 1,\hspace{1em}& {x_{j}}=\frac{1}{2},\\ {} 0,\hspace{1em}& {x_{j}}>\frac{1}{2}.\end{array}\right.\]For $ {\lim \nolimits_{\gamma \to \infty }}{({\textstyle\sum _{j=1}^{n}}{\omega _{j}}{({x_{j}^{-1}}-1)^{\gamma }})^{\frac{1}{\gamma }}}$, taking $ {x_{k}}=\min \{{x_{1}},{x_{2}},\dots ,{x_{n}}\}$ with $ k\in \{1,\dots ,n\}$, then we have the following three cases:Case 1. $ {x_{k}}<\frac{1}{2}$, i.e. $ {x_{k}^{-1}}-1>1$. Then it follows from L’Hôpital’s rule that\[\begin{array}{l}\displaystyle \underset{\gamma \to \infty }{\lim }{\Bigg({\sum \limits_{j=1}^{n}}{\omega _{j}}{({x_{j}^{-1}}-1)^{\gamma }}\Bigg)^{\frac{1}{\gamma }}}=\underset{\gamma \to \infty }{\lim }{e^{\frac{\ln ({\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{({x_{j}^{-1}}-1)^{\gamma }})}{\gamma }}}\\ {} \displaystyle \hspace{1em}=\underset{\gamma \to \infty }{\lim }{e^{\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{({x_{j}^{-1}}-1)^{\gamma }}\ln ({x_{j}^{-1}}-1)}{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{({x_{j}^{-1}}-1)^{\gamma }}}}}=\underset{\gamma \to \infty }{\lim }{e^{\frac{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{(\frac{{x_{j}^{-1}}-1}{{x_{k}^{-1}}-1})^{\gamma }}\ln ({x_{j}^{-1}}-1)}{{\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{(\frac{{x_{j}^{-1}}-1}{{x_{k}^{-1}}-1})^{\gamma }}}}}\\ {} \displaystyle \hspace{1em}={e^{\ln ({x_{k}^{-1}}-1)}}={x_{k}^{-1}}-1.\end{array}\]Thus $ {\lim \nolimits_{\gamma \to \infty }}{T_{\omega ,{g_{\gamma }^{D}}}}(x)={x_{k}}$.Case 2. $ {x_{k}}=\frac{1}{2}$, i.e. $ {x_{k}^{-1}}-1=1$. Then it follows from L’Hôpital’s rule that\[ \underset{\gamma \to \infty }{\lim }{\Bigg({\sum \limits_{j=1}^{n}}{\omega _{j}}{\big({x_{j}^{-1}}-1\big)^{\gamma }}\Bigg)^{\frac{1}{\gamma }}}=\underset{\gamma \to \infty }{\lim }{e^{\frac{\ln ({\textstyle\textstyle\sum _{j=1}^{n}}{\omega _{j}}{({x_{j}^{-1}}-1)^{\gamma }})}{\gamma }}}=1,\]thus $ {\lim \nolimits_{\gamma \to \infty }}{T_{\omega ,{g_{\gamma }^{D}}}}(x)=\frac{1}{2}$.Case 3. $ {x_{k}}>\frac{1}{2}$, i.e. $ {x_{k}^{-1}}-1<1$. Then it is similar to Case 1 that\[ \underset{\gamma \to \infty }{\lim }{\Bigg({\sum \limits_{j=1}^{n}}{\omega _{j}}{\big({x_{j}^{-1}}-1\big)^{\gamma }}\Bigg)^{\frac{1}{\gamma }}}={x_{k}^{-1}}-1,\]thus $ {\lim \nolimits_{\gamma \to \infty }}{T_{\omega ,{g_{\gamma }^{D}}}}(x)={x_{k}}$.All in all, we have $ {\lim \nolimits_{\gamma \to \infty }}{T_{\omega ,{g_{\gamma }^{D}}}}(x)={x_{k}}$, which yields that(14)
\[ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\infty }^{D}}}}}}(\alpha )=\left(\frac{\min ({\mu _{\alpha }})}{\min ({\mu _{\alpha }})+\min (1-{\mu _{\alpha }})},\frac{\min ({\nu _{\alpha }})}{\min ({\nu _{\alpha }})+\min (1-{\nu _{\alpha }})}\right).\](15)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{0}^{D}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\mu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}},\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\nu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}\right).\end{array}\]
3.2 Symmetric Intuitionistic Fuzzy Weighted Mean Operators w.r.t. Weighted Archimedean t-Conorms
Lemma 3.4.
Proof.
Definition 3.5.
(17)
\[ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,g}}}}(\alpha )=\left(\frac{{S_{\omega ,g}}({\mu _{\alpha }})}{{S_{\omega ,g}}({\mu _{\alpha }})+{S_{\omega ,g}}(1-{\mu _{\alpha }})},\frac{{S_{\omega ,g}}({\nu _{\alpha }})}{{S_{\omega ,g}}({\nu _{\alpha }})+{S_{\omega ,g}}(1-{\nu _{\alpha }})}\right),\]Proposition 3.6.
-
(1) If all $ {\alpha _{j}}$ are equal, i.e. $ {\alpha _{j}}=\delta =({\mu _{\delta }},{\nu _{\delta }})$, for all j, then $ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,g}}}}(\alpha )=\delta $;
-
(2) If $ {\alpha _{j}}\leqslant {\beta _{j}}$ for all j, then $ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,g}}}}(\alpha )\leqslant {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,g}}}}(\beta )$;
-
(3) Let $ {\alpha ^{-}}=(\min ({\mu _{\alpha }}),\max ({\nu _{\alpha }}))$ and $ {\alpha ^{+}}=(\max ({\mu _{\alpha }}),\min ({\nu _{{\alpha _{j}}}}))$, then $ {\alpha ^{-}}\leqslant {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,g}}}}(\alpha )\leqslant {\alpha ^{+}}$.
-
1. If $ g(t)={g_{\gamma }^{H}}(1-t)$, then the SIFWM $ {^{{S_{\omega ,g}}}}$ operator is reduced to the following form:
(18)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{\gamma }^{H}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{S_{\omega ,{g_{\gamma }^{H}}}}({\mu _{\alpha }})}{{S_{\omega ,{g_{\gamma }^{H}}}}(1-{\mu _{\alpha }})+{S_{\omega ,{g_{\gamma }^{H}}}}({\mu _{\alpha }})},\frac{{S_{\omega ,{g_{\gamma }^{H}}}}({\nu _{\alpha }})}{{S_{\omega ,{g_{\gamma }^{H}}}}(1-{\nu _{\alpha }})+{S_{\omega ,{g_{\gamma }^{H}}}}({\nu _{\alpha }})}\right),\end{array}\]Especially, if $ \gamma =1$, i.e. $ {g_{1}^{H}}(t)=-\ln (1-t)$, then the $ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{1}^{H}}}}}}$ operator with $ {S_{\omega ,{g_{1}^{H}}}}(x)=1-{\textstyle\prod _{j=1}^{n}}{(1-{x_{j}})^{{\omega _{j}}}}$ is the symmetric form of intuitionistic fuzzy weighted averaging (IFWA) operator defined by Xu (2007) ; if $ \gamma =2$, i.e. $ {g_{2}^{H}}(t)=\ln (\frac{1+t}{1-t})$, then the $ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{2}^{H}}}}}}$ operator with $ {S_{\omega ,{g_{2}^{H}}}}(x)=\frac{{\textstyle\prod _{j=1}^{n}}{(\frac{1+{x_{j}}}{1-{x_{j}}})^{{\omega _{j}}}}-1}{{\textstyle\prod _{j=1}^{n}}{(\frac{1+{x_{j}}}{1-{x_{j}}})^{{\omega _{j}}}}+1}$ is the symmetric form of IFWG operator based on Einstein t-norm and t-conorm defined by Wang and Liu (2012) ; if $ \gamma \to \infty $, then it is similar to the proof of $ {\lim \nolimits_{\gamma \to \infty }}{T_{\omega ,{g_{\gamma }^{H}}}}(x)$ that\[ \underset{\gamma \to \infty }{\lim }{S_{\omega ,{g_{\gamma }^{H}}}}(x)=\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{x_{j}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{x_{j}^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{x_{j}})^{{\omega _{j}}}}},\]and hence(19)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{\infty }^{H}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\mu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}},\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\nu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}\right).\end{array}\] -
2. If $ g(t)={g_{\gamma }^{SS}}(1-t)$, then the SIFWM $ {^{{S_{\omega ,g}}}}$ operator is reduced to the following form:
(20)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{\gamma }^{SS}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{S_{\omega ,{g_{\gamma }^{SS}}}}({\mu _{\alpha }})}{{S_{\omega ,{g_{\gamma }^{SS}}}}({\mu _{\alpha }})+{S_{\omega ,{g_{\gamma }^{SS}}}}(1-{\mu _{\alpha }})},\frac{{S_{\omega ,{g_{\gamma }^{SS}}}}({\nu _{\alpha }})}{{S_{\omega ,{g_{\gamma }^{SS}}}}({\nu _{\alpha }})+{S_{\omega ,{g_{\gamma }^{SS}}}}(1-{\nu _{\alpha }})}\right),\end{array}\](21)
\[ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{\infty }^{SS}}}}}}(\alpha )=\left(\frac{\min ({\mu _{\alpha }})}{\min ({\mu _{\alpha }})+\min (1-{\mu _{\alpha }})},\frac{\min ({\nu _{\alpha }})}{\min ({\nu _{\alpha }})+\min (1-{\nu _{\alpha }})}\right),\](22)
\[ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{-\infty }^{SS}}}}}}(\alpha )=\left(\frac{\max ({\mu _{\alpha }})}{\max ({\mu _{\alpha }})+\max (1-{\mu _{\alpha }})},\frac{\max ({\nu _{\alpha }})}{\max ({\nu _{\alpha }})+\max (1-{\nu _{\alpha }})}\right),\](23)
\[\begin{array}{r@{\hskip4.0pt}c}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{0}^{SS}}}}}}(\alpha )=& \displaystyle \left(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\mu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}},\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\nu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}\right).\end{array}\] -
(3) If $ g(t)={g_{\gamma }^{D}}(1-t)$, then the SIFWM $ {^{{S_{\omega ,g}}}}$ operator is reduced to the following form:
(24)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{\gamma }^{D}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{S_{\omega ,{g_{\gamma }^{D}}}}({\mu _{\alpha }})}{{S_{\omega ,{g_{\gamma }^{D}}}}({\mu _{\alpha }})+{S_{\omega ,{g_{\gamma }^{D}}}}(1-{\mu _{\alpha }})},\frac{{S_{\omega ,{g_{\gamma }^{D}}}}({\nu _{\alpha }})}{{S_{\omega ,{g_{\gamma }^{D}}}}({\nu _{\alpha }})+{S_{\omega ,{g_{\gamma }^{D}}}}(1-{\nu _{\alpha }})}\right),\end{array}\]Particularly, if $ \gamma =1$, then the SIFWM $ {^{{S_{\omega ,g}}}}$ operator is reduced to the following form:(25)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{1}^{D}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{S_{\omega ,{g_{1}^{D}}}}({\mu _{\alpha }})}{{S_{\omega ,{g_{1}^{D}}}}({\mu _{\alpha }})+{S_{\omega ,{g_{1}^{D}}}}(1-{\mu _{\alpha }})},\frac{{S_{\omega ,{g_{1}^{D}}}}({\nu _{\alpha }})}{{S_{\omega ,{g_{1}^{D}}}}({\nu _{\alpha }})+{S_{\omega ,{g_{1}^{D}}}}(1-{\nu _{\alpha }})}\right),\end{array}\](26)
\[ {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{\infty }^{D}}}}}}(\alpha )=\left(\frac{\max ({\mu _{\alpha }})}{\max ({\mu _{\alpha }})+\max (1-{\mu _{\alpha }})},\frac{\max ({\nu _{\alpha }})}{\max ({\nu _{\alpha }})+\max (1-{\nu _{\alpha }})}\right),\](27)
\[\begin{array}{l}\displaystyle {\text{SIFWM}\hspace{2.5pt}^{{S_{\omega ,{g_{0}^{D}}}}}}(\alpha )\\ {} \displaystyle \hspace{1em}=\left(\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\mu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\mu _{{\alpha _{j}}}^{{\omega _{j}}}}},\frac{{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}{{\textstyle\textstyle\prod _{j=1}^{n}}{(1-{\nu _{{\alpha _{j}}}})^{{\omega _{j}}}}+{\textstyle\textstyle\prod _{j=1}^{n}}{\nu _{{\alpha _{j}}}^{{\omega _{j}}}}}\right).\end{array}\]
Corollary 3.7.
-
(1) $ {\mathrm{SIFWM}^{{T_{\omega ,{g_{1}^{H}}}}}}={\mathrm{SIFWM}^{{T_{\omega ,{g_{\infty }^{H}}}}}}={\mathrm{SIFWM}^{{T_{\omega ,{g_{0}^{SS}}}}}}={\mathrm{SIFWM}^{{T_{\omega ,{g_{0}^{D}}}}}}={\mathrm{SIFWM}^{{S_{\omega ,{g_{\infty }^{H}}}}}}={\mathrm{SIFWM}^{{S_{\omega ,{g_{1}^{H}}}}}}={\mathrm{SIFWM}^{{S_{\omega ,{g_{0}^{SS}}}}}}={\mathrm{SIFWM}^{{S_{\omega ,{g_{0}^{D}}}}}}$;
-
(2) $ {\mathrm{SIFWM}^{{S_{\omega ,{g_{\infty }^{SS}}}}}}={\mathrm{SIFWM}^{{T_{\omega ,{g_{-\infty }^{SS}}}}}}={\mathrm{SIFWM}^{{T_{\omega ,{g_{\infty }^{D}}}}}}$;
-
(3) $ {\mathrm{SIFWM}^{{T_{\omega ,{g_{\infty }^{SS}}}}}}={\mathrm{SIFWM}^{{S_{\omega ,{g_{-\infty }^{SS}}}}}}={\mathrm{SIFWM}^{{S_{\omega ,{g_{\infty }^{D}}}}}}$;
-
(4) $ {\mathrm{SIFWM}^{{T_{\omega ,{g_{0}^{H}}}}}}={\mathrm{SIFWM}^{{T_{\omega ,{g_{-1}^{SS}}}}}}$.
-
• these existing operators (Beliakov et al., 2011; Liao and Xu, 2015; Xia and Xu, 2012) can only treat membership and non-membership information fairly, and provide a single choice for the decision maker; the proposed ones can not only treat membership and non-membership information fairly but also provide more choices for the decision maker;
-
• the existing operator (Liao and Xu, 2015) can not reduce to the corresponding fuzzy one; the proposed ones can be considered as generalizations of the existing aggregation operators in fuzzy cases;
-
• the existing operator (Xia and Xu, 2012) is not suitable for dealing with IFNs $ (1,0)$ or $ (0,1)$; the proposed operators can solve the case.
4 The Relationships Among the Proposed Aggregation Operators and the Existing One
Lemma 4.1.
-
(1) Ma and Xu ( 2016) if $ y\leqslant x$, then $ y\leqslant \frac{y}{1-x+y}\leqslant x$ and $ y\leqslant \frac{x}{1+x-y}\leqslant x$;
-
(2) if g is convex (concave), then $ g({\textstyle\sum _{i=1}^{n}}{\omega _{i}}{x_{i}})\leqslant (\geqslant ){\textstyle\sum _{i=1}^{n}}{\omega _{i}}g({x_{i}})$, the equality holds if and only if $ {x_{1}}={x_{2}}=\cdots ={x_{n}}$ or g is linear.
Proposition 4.2.
-
(1) If g is concave, then IFWM $ {^{{T_{\omega ,g}}}}(\alpha )$ ⩽ SIFWM $ {^{{T_{\omega ,g}}}}(\alpha )$ ⩽ IFWA $ {^{{T_{\omega ,g}}}}(\alpha )$;
-
(2) If g is convex, then IFWA $ {^{{T_{\omega ,g}}}}(\alpha )$ ⩽ SIFWM $ {^{{T_{\omega ,g}}}}(\alpha )$ ⩽ IFWM $ {^{{T_{\omega ,g}}}}(\alpha )$;
-
(3) If g has at least one inflection point, then the inequality varies with concavity-convexity of g.
Proof.
Proposition 4.3.
-
(1) If g is concave, then IFWM $ {^{{S_{\omega ,g}}}}(\alpha )$ ⩽ SIFWM $ {^{{S_{\omega ,g}}}}(\alpha )$ ⩽ IFWA $ {^{{S_{\omega ,g}}}}(\alpha )$;
-
(2) If g is convex, then IFWA $ {^{{S_{\omega ,g}}}}(\alpha )$ ⩽ SIFWM $ {^{{S_{\omega ,g}}}}(\alpha )$ ⩽ IFWM $ {^{{S_{\omega ,g}}}}(\alpha )$;
-
(3) If g has at least one inflection point, then the inequality varies with concavity-convexity of g.
Proof.
5 An Approach to Intuitionistic Fuzzy Multi-Criteria Decision Making
-
(1) Transform the intuitionistic fuzzy decision matrix $ D={(({\mu _{ij}},{\nu _{ij}}))_{m\times n}}$ into the normalized one $ B={(({\beta _{ij}}))_{m\times n}}$, where
-
(2) Aggregate the IFNs $ {\beta _{ij}}$ $ (j=1,2,\dots ,n)$ of the alternative $ {x_{i}}$ $ (i=1,2,\dots ,m)$, denoted as $ {\beta _{i}}$ $ (i=1,2,\dots ,m)$, by the proposed aggregation operators $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{SS}}}}}}$ (9).
-
(3) Calculate the score $ s({\beta _{i}})$ of $ {\beta _{i}}$ $ (i=1,2,\dots ,m)$ by Definition 2.6, and obtain the priority of the alternatives according to the ranking of $ {\beta _{i}}$ $ (i=1,2,\dots ,m)$, the bigger the IFN $ {\beta _{i}}$ is, the better the alternative $ {x_{i}}$ is.
Example 5.1.
Table 1
$ {C_{1}}$ | $ {C_{2}}$ | $ {C_{3}}$ | $ {C_{4}}$ | |
$ {x_{1}}$ | (0.60, 0.18) | (0.24, 0.44) | (0.10, 0.54) | (0.45, 0.23) |
$ {x_{2}}$ | (0.41, 0.25) | (0.49, 0.09) | (0.10, 0.39) | (0.52, 0.45) |
$ {x_{3}}$ | (0.62, 0.18) | (0.67, 0.28) | (0.36, 0.42) | (0.12, 0.67) |
$ {x_{4}}$ | (0.21, 0.58) | (0.76, 0.22) | (0.48, 0.34) | (0.15, 0.53) |
$ {x_{5}}$ | (0.38, 0.19) | (0.65, 0.32) | (0.06, 0.29) | (0.24, 0.39) |
$ {x_{6}}$ | (0.56, 0.12) | (0.50, 0.41) | (0.21, 0.07) | (0.06, 0.28) |
-
(1) Aggregate the IFNs $ {\beta _{ij}}$ $ (j=1,2,3,4)$ of the alternative $ {x_{i}}$ $ (i=1,2,3,4,5,6)$, denoted as $ {\beta _{i}}$ $ (i=1,2,3,4,5,6)$, by the $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{SS}}}}}}$ operator (9).
Fig. 1.
Fig. 2.
Fig. 3.
-
Fig. 1 gives the variation of the memberships of the aggregated results by $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{SS}}}}}}$ operators, denoted as $ {\mu _{i}^{{T_{\omega ,{g_{\gamma }^{H}}}}}}$ ( $ i=1,2,\dots ,6$), respectively, with the parameter γ from −20 to 20. Particularly, when $ \gamma =0$, it is the result obtained by the operator in Xia et al. (2012) ; when $ \gamma =1$, it is the result obtained by the operator in Beliakov et al. (2011).
-
Fig. 2 indicates the variation of the nonmemberships of the aggregated results by $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{SS}}}}}}$ operators where the values of γ increase from $ -20$ to 20. Similarly, when $ \gamma =0$, it is the result obtained by the operator in Xia et al. (2012) ; when $ \gamma =1$, it is the result obtained by the operator in Beliakov et al. (2011).
-
Fig. 3 provides the variation of the scores of the alternatives obtained by the $ {\text{SIFWM}\hspace{2.5pt}^{{T_{\omega ,{g_{\gamma }^{SS}}}}}}$ operator with γ from −30 to 30. When $ \gamma <-14.7$, that is, pessimistically, the optimal alternative is $ {x_{4}}$; when $ -14.7<\gamma <-1.2$, relatively pessimistically, optimal one is $ {x_{2}}$; when $ -1.2<\gamma <9.2$, impartially the optimal one is $ {x_{6}}$; when $ 9.2<\gamma $, optimistically, the optimal one is $ {x_{5}}$. It is obvious that the alternative $ {x_{5}}$ varies from the worst one to the optimal one with the parameter γ which reflects the attitude of the decision maker.
Table 2
Operator | Ranking order |
The proposed operator with $ \gamma =-\infty $ | $ {x_{4}}\succ {x_{2}}\succ {x_{6}}\succ {x_{1}}\succ {x_{3}}\succ {x_{5}}$ |
The proposed operator with $ \gamma =-1$ | $ {x_{6}}\succ {x_{2}}\succ {x_{3}}\succ {x_{1}}\succ {x_{5}}\succ {x_{4}}$ |
The proposed operator with $ \gamma =0$ (Xia and Xu, 2012) | $ {x_{6}}\succ {x_{3}}\succ {x_{2}}\succ {x_{1}}\succ {x_{5}}\succ {x_{4}}$ |
The proposed operator with $ \gamma =1$ (Beliakov et al., 2011) | $ {x_{6}}\succ {x_{3}}\succ {x_{2}}\succ {x_{5}}\succ {x_{1}}\succ {x_{4}}$ |
The proposed operator with $ \gamma =\infty $ | $ {x_{5}}\succ {x_{6}}\succ {x_{2}}\succ {x_{4}}\succ {x_{1}}\succ {x_{3}}$ |
The operator provided by Liao (Liao and Xu, 2015) | $ {x_{6}}\succ {x_{2}}\succ {x_{3}}\succ {x_{1}}\succ {x_{5}}\succ {x_{4}}$ |