Journal:Informatica
Volume 32, Issue 3 (2021), pp. 543–564
Abstract
As an extension of intuitionistic fuzzy sets, picture fuzzy sets can deal with vague, uncertain, incomplete and inconsistent information. The similarity measure is an important technique to distinguish two objects. In this study, a similarity measure between picture fuzzy sets based on relationship matrix is proposed. The new similarity measure satisfies the axiomatic definition of similarity measure. It can be testified from a numerical experiment that the new similarity measure is more effective. Finally, we apply the proposed similarity measure to multiple-attribute decision making.
Pub. online:23 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 1 (2020), pp. 35–63
Abstract
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a very common and useful method for solving multi-criteria decision making problems in certain and uncertain environments. Single valued neutrosophic hesitant fuzzy set (SVNHFS) and interval neutrosophic hesitant fuzzy set (INHFS) are developed on the integration of neutrosophic set and hesitant fuzzy set. In this paper, we extend TOPSIS method for multi-attribute decision making based on single valued neutrosophic hesitant fuzzy set and interval neutrosophic hesitant fuzzy set. Furthermore, we assume that the attribute weights are known, incompletely known or completely unknown. We establish two optimization models for SVNHFS and INHFS with the help of maximum deviation method. Finally, we provide two numerical examples to validate the proposed approach.
Journal:Informatica
Volume 27, Issue 4 (2016), pp. 863–892
Abstract
This paper investigates a kind of hybrid multiple attribute decision making (MADM) problems with incomplete attribute weight information and develops a hesitant fuzzy programming method based on the linear programming technique for multidimensional analysis of preference (LINMAP). In this method, decision maker (DM) gives preferences over alternatives by the pair-wise comparison with hesitant fuzzy truth degrees and the evaluation values are expressed as crisp numbers, intervals, intuitionistic fuzzy sets (IFSs), linguistic variables and hesitant fuzzy sets (HFSs). First, by calculating the relative projections of alternatives on the positive ideal solution (PIS) and negative ideal solution (NIS), the overall relative closeness degrees of alternatives associated with attribute weights are derived. Then, the hesitant fuzzy consistency and inconsistency measures are defined. Through minimizing the inconsistency measure and maximizing the consistency measure simultaneously, a new bi-objective hesitant fuzzy programming model is constructed and a novel solution method is developed. Thereby, the weights of attributes are determined objectively. Subsequently, the ranking order of alternatives is generated based on the overall relative closeness degrees of alternatives. Finally, a supplier selection example is provided to show the validity and applicability of the proposed method.
Journal:Informatica
Volume 27, Issue 1 (2016), pp. 111–139
Abstract
With respect to multi-attribute decision making under uncertain linguistic environment, a new interval-valued 2-tuple linguistic representation model is introduced. To deal with the situation where the elements in a set are interdependent, several generalized interval-valued 2-tuple linguistic correlated aggregation operators are defined. It is worth pointing out that some interval-valued 2-tuple linguistic operators based on additive measures are special cases of our operators. Meanwhile, several special cases and desirable properties are discussed. Furthermore, models based on the correlation coefficient are constructed, by which the optimal weight vector can be obtained. Moreover, an approach to multi-attribute group decision making with uncertain linguistic information is developed. Finally, an example is selected to show the effectivity and feasibility of the developed procedure.
Journal:Informatica
Volume 25, Issue 4 (2014), pp. 617–642
Abstract
Abstract
With respect to interval-valued hesitant fuzzy multi-attribute decision making, this study first presents a new ranking method for interval-valued hesitant fuzzy elements. In order to obtain the comprehensive values of alternatives, two induced generalized interval-valued hesitant fuzzy hybrid operators based on the Shapley function are defined, which globally consider the importance of elements and their ordered positions as well as reflect the interactions between them. If the weight information is incompletely known, models for the optimal weight vectors on the attribute set and on the ordered set are respectively established. Furthermore, an approach to interval-valued hesitant fuzzy multi-attribute decision making with incomplete weight information and interactive characteristics is developed. Finally, an illustrative example is provided to show the concrete application of the proposed procedure.