Pub. online:20 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 155–178
Abstract
Metaheuristics are commonly employed as a means of solving many distinct kinds of optimization problems. Several natural-process-inspired metaheuristic optimizers have been introduced in the recent years. The convergence, computational burden and statistical relevance of metaheuristics should be studied and compared for their potential use in future algorithm design and implementation. In this paper, eight different variants of dragonfly algorithm, i.e. classical dragonfly algorithm (DA), hybrid memory-based dragonfly algorithm with differential evolution (DADE), quantum-behaved and Gaussian mutational dragonfly algorithm (QGDA), memory-based hybrid dragonfly algorithm (MHDA), chaotic dragonfly algorithm (CDA), biogeography-based Mexican hat wavelet dragonfly algorithm (BMDA), hybrid Nelder-Mead algorithm and dragonfly algorithm (INMDA), and hybridization of dragonfly algorithm and artificial bee colony (HDA) are applied to solve four industrial chemical process optimization problems. A fuzzy multi-criteria decision making tool in the form of fuzzy-measurement alternatives and ranking according to compromise solution (MARCOS) is adopted to ascertain the relative rankings of the DA variants with respect to computational time, Friedman’s rank based on optimal solutions and convergence rate. Based on the comprehensive testing of the algorithms, it is revealed that DADE, QGDA and classical DA are the top three DA variants in solving the industrial chemical process optimization problems under consideration.
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 179–202
Abstract
The purpose of this manuscript is to develop a novel MAIRCA (Multi-Attribute Ideal-Real Comparative Analysis) method to solve the MCDM (Multiple Criteria Decision-Making) problems with completely unknown weights in the q-rung orthopair fuzzy (q-ROF) setting. Firstly, the new concepts of q-ROF Lance distance are defined and some related properties are discussed in this paper, from which we establish the maximizing deviation method (MDM) model for q-ROF numbers to determine the optimal criteria weight. Then, the Lance distance-based MAIRCA (MAIRCA-L) method is designed. In it, the preference, theoretical and real evaluation matrices are calculated considering the interaction relationship in q-ROF numbers, and the q-ROF Lance distance is applied to obtain the gap matrix. Finally, we manifest the effectiveness and advantage of the q-ROF MAIRCA-L method by two numerical examples.
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 1–33
Abstract
Innovations in technology emerged with digitalization affect all sectors, including supply chain and logistics. The term “digital supply chain” has arisen as a relatively new concept in the manufacturing and service sectors. Organizations planning to utilize the benefits of digitalization, especially in the supply chain area, have uncertainties on how to adapt digitalization, which criteria they will evaluate, what kind of strategies should be developed, and which should be given more importance. Multi-criteria decision making (MCDM) approaches can be addressed to determine the best strategy under various criteria in digital transformation. Because of the need to capture this uncertainty, fermatean fuzzy sets (FFSs) have been preferred in the study to widen the definition domain of uncertainty parameters. Interval-valued fermatean fuzzy sets (IVFFSs) are one of the most often used fuzzy set extensions to cope with uncertainty. Therefore, a new interval-valued fermatean fuzzy analytic hierarchy process (IVFF-AHP) method has been developed. After determining the main criteria and sub-criteria, the IVFF-AHP method has been used for calculating the criteria weights and ranking the alternatives. By determining the most important strategy and criteria, the study provides a comprehensive framework of digital transformation in the supply chain.
Journal:Informatica
Volume 27, Issue 1 (2016), pp. 49–65
Abstract
In the hiring process at companies, decision makers have underused the methods of the multi-criteria decision-making processes of selection of personnel. Therefore, this paper aims to establish a framework for the selection of candidates during the process of the recruitment and selection of personnel based on the SWARA and ARAS methods under uncertainties. The usability and efficiency of the proposed framework is considered in the conducted case study of the selection of candidate for the position of the sales manager.
Journal:Informatica
Volume 17, Issue 4 (2006), pp. 467–480
Abstract
We revisit the password-based group key exchange protocol due to Lee et al. (2004), which carries a claimed proof of security in the Bresson et al. model under the intractability of the Decisional Diffie–Hellman problem (DDH) and Computational Diffie–Hellman (CDH) problem. We reveal a previously unpublished flaw in the protocol and its proof, whereby we demonstrate that the protocol violates the definition of security in the model. To provide a better insight into the protocol and proof failures, we present a fixed protocol. We hope our analysis will enable similar mistakes to be avoided in the future. We also revisit protocol 4 of Song and Kim (2000), and reveal a previously unpublished flaw in the protocol (i.e., a reflection attack).