1 Introduction
2 Basic Concepts
2.1 Pythagorean Fuzzy Set (PFS)
Definition 1.
Definition 2.
2.2 Interval Valued Pythagorean Fuzzy Set (IVPFS)
Definition 3.
(2)
\[ \tilde{p}=\big\{\big\langle x,\big({\tilde{\mu }_{\tilde{p}}}(x),{\tilde{\nu }_{\tilde{p}}}(x)\big)\big\rangle \big|x\in X\big\},\]Definition 4.
-
(1) $\begin{array}[t]{r@{\hskip4.0pt}c@{\hskip4.0pt}l}{\tilde{p}_{1}}\oplus {\tilde{p}_{2}}& =& \Big(\Big[\sqrt{{\big({\mu _{{\tilde{p}_{1}}}^{L}}\big)^{2}}+{\big({\mu _{{\tilde{p}_{2}}}^{L}}\big)^{2}}-{\big({\mu _{{\tilde{p}_{1}}}^{L}}\big)^{2}}{({\mu _{{\tilde{p}_{2}}}^{L}})^{2}}},\\ {} & & \sqrt{{\big({\mu _{{\tilde{p}_{1}}}^{R}}\big)^{2}}+{\big({\mu _{{\tilde{p}_{2}}}^{R}}\big)^{2}}-{\big({\mu _{{\tilde{p}_{1}}}^{R}}\big)^{2}}{({\mu _{{\tilde{p}_{2}}}^{R}})^{2}}}\Big],\big[{\nu _{{\tilde{p}_{1}}}^{L}}{\nu _{{\tilde{p}_{2}}}^{L}},{\mu _{{\tilde{p}_{1}}}^{R}}{\mu _{{\tilde{p}_{1}}}^{R}}\big]\Big);\end{array}$
-
(2) $\begin{array}[t]{r@{\hskip4.0pt}c@{\hskip4.0pt}l}{\tilde{p}_{1}}\otimes {\tilde{p}_{2}}& =& \Big(\Big[{\nu _{{\tilde{p}_{1}}}^{L}}{\mu _{{\tilde{p}_{2}}}^{L}},{\mu _{{\tilde{p}_{1}}}^{R}}{\mu _{{\tilde{p}_{1}}}^{R}}\Big],\Big[\sqrt{{\big({\nu _{{\tilde{p}_{1}}}^{L}}\big)^{2}}+{\big({\nu _{{\tilde{p}_{2}}}^{L}}\big)^{2}}-{\big({\nu _{{\tilde{p}_{1}}}^{L}}\big)^{2}}{\big({\nu _{{\tilde{p}_{2}}}^{L}}\big)^{2}}},\\ {} & & \sqrt{{\big({\nu _{{\tilde{p}_{1}}}^{R}}\big)^{2}}+{\big({\nu _{{\tilde{p}_{2}}}^{R}}\big)^{2}}-{\big({\nu _{{\tilde{p}_{1}}}^{R}}\big)^{2}}{\big({\nu _{{\tilde{p}_{2}}}^{R}}\big)^{2}}}\Big]\Big);\end{array}$
-
(3) $\pi \tilde{p}=\Big(\Big[\sqrt{1-{\big(1-{\big({\mu _{\tilde{p}}^{L}}\big)^{2}}\big)^{\pi }}},\sqrt{1-{\big(1-{\big({\mu _{\tilde{p}}^{R}}\big)^{2}}\big)^{\pi }}}\Big],\big[{\big({\nu _{\tilde{p}}^{L}}\big)^{\pi }},{\big({\nu _{\tilde{p}}^{R}}\big)^{\pi }}]\big)$, $\pi >0$;
-
(4) ${(\tilde{p})^{\pi }}=\Big(\big[{\big({\mu _{\tilde{p}}^{L}}\big)^{\pi }},{\big({\mu _{\tilde{p}}^{R}}\big)^{\pi }}\big],\Big[\sqrt{1-{\big(1-{\big({\nu _{\tilde{p}}^{L}}\big)^{2}}\big)^{\pi }}},\sqrt{1-{\big(1-{\big({\nu _{\tilde{p}}^{R}}\big)^{2}}\big)^{\pi }}}\Big]\Big)$, $\pi >0$;
-
(5) ${(\tilde{p})^{c}}=\big(\big[{\nu _{\tilde{p}}^{L}},{\nu _{\tilde{p}}^{R}}\big],\big[{\mu _{\tilde{p}}^{L}},{\mu _{\tilde{p}}^{R}}\big]\big)$.
Theorem 1.
-
(1) ${\tilde{p}_{1}}\oplus {\tilde{p}_{2}}={\tilde{p}_{2}}\oplus {\tilde{p}_{1}}$;
-
(2) ${\tilde{p}_{1}}\otimes {\tilde{p}_{2}}={\tilde{p}_{2}}\otimes {\tilde{p}_{1}}$;
-
(3) $\pi ({\tilde{p}_{1}}\oplus {\tilde{p}_{2}})=\pi {\tilde{p}_{1}}\oplus \pi {\tilde{p}_{2}}$;
-
(4) ${({\tilde{p}_{1}}\otimes {\tilde{p}_{2}})^{\pi }}={({\tilde{p}_{1}})^{\pi }}\otimes {({\tilde{p}_{2}})^{\pi }}$;
-
(5) ${\pi _{1}}{\tilde{p}_{1}}\oplus {\pi _{2}}{\tilde{p}_{1}}=({\pi _{1}}+{\pi _{2}}){\tilde{p}_{1}}$;
-
(6) ${\tilde{p}_{1}^{{\pi _{1}}}}\otimes {\tilde{p}_{1}^{{\pi _{2}}}}={\tilde{p}_{1}^{({\pi _{1}}+{\pi _{2}})}}$;
-
(7) ${({\tilde{p}_{1}^{{\pi _{1}}}})^{{\pi _{2}}}}={({\tilde{p}_{1}})^{{\pi _{1}}{\pi _{2}}}}$.
Definition 5.
2.3 Muirhead Mean (MM)
Definition 6.
(3)
\[ M{M^{\pi }}({\alpha _{1}},{\alpha _{2}},\dots ,{\alpha _{n}})={\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\alpha _{\varphi (j)}^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\](6)
\[ M{M^{(\stackrel{k}{\overbrace{1,1,\dots ,1}},\stackrel{n-k}{\overbrace{0,0,\dots ,0}})}}({\alpha _{1}},{\alpha _{2}},\dots ,{\alpha _{n}})={\bigg(\frac{{\textstyle\sum _{1\leqslant {i_{1}}\leqslant \cdots \leqslant {i_{i}}\leqslant n}}{\textstyle\textstyle\prod _{j=1}^{n}}{\alpha _{{i_{j}}}}}{{C_{n}^{k}}}\bigg)^{1/k}}\hspace{-0.1667em}\hspace{-0.1667em},\]3 Interval Valued Pythagorean Fuzzy Muirhead Mean (IVPFMM) Operators
3.1 IVPFMM Operator
Definition 7.
(8)
\[ {\mathit{IVPMM}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})={\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\]Theorem 2.
(9)
\[\begin{array}{l}\displaystyle \mathrm{IVPFM}{\mathrm{M}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\cdots \hspace{0.1667em},{\tilde{p}_{n}})={\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\sum \limits_{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\begin{array}{l}{\bigg(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\bigg(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\right]\right.,\\ {} \displaystyle \hspace{2em}\left.\left[\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}},\\ {} \sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\right]\right).\end{array}\]Proof.
(10)
\[ {({\tilde{p}_{\varphi (j)}^{R}})^{{\pi _{j}}}}=\left(\begin{array}{l}\big[{\big({\mu _{\varphi (j)}^{L}}\big)^{{\pi _{j}}}},{\big({\mu _{\varphi (j)}^{R}}\big)^{{\pi _{j}}}}\big],\\ {} \left[\begin{array}{l}\sqrt{1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}},\\ {} \sqrt{1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\end{array}\right]\end{array}\right),\](11)
\[ {\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}=\left(\begin{array}{l}\bigg[{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{L}}\big)^{{\pi _{j}}}},{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{{\pi _{j}}}}\bigg],\\ {} \left[\begin{array}{l}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}},\\ {} \sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\end{array}\right]\end{array}\right).\](12)
\[ \sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}=\left(\begin{array}{l}\left[\begin{array}{l}\sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)},\\ {} \sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)}\end{array}\right],\\ {} \left[\begin{array}{l}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}},\\ {} \textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\end{array}\right]\end{array}\right),\](13)
\[\begin{aligned}{}\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}=& \left(\left[\begin{array}{l}\sqrt{1-{\bigg(1-\bigg(1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)\bigg)^{\frac{1}{n!}}}},\\ {} \sqrt{1-{\bigg(1-\bigg(1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)\bigg)^{\frac{1}{n!}}}}\end{array}\right],\right.\\ {} & \left.\left[\begin{array}{l}{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}}\bigg)^{\frac{1}{n!}}},\\ {} {\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\bigg)^{\frac{1}{n!}}}\end{array}\right]\right).\end{aligned}\](14)
\[\begin{array}{l}\displaystyle {\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\Bigg(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\right]\right.,\\ {} \displaystyle \hspace{2em}\left.\left[\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}},\\ {} \sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\right]\right)\end{array}\](15)
\[ 0\leqslant {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\leqslant 1,\](16)
\[ 0\leqslant \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\leqslant 1.\](17)
\[\begin{array}{l}\displaystyle {\Bigg({\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}+{\Bigg(\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}\leqslant {\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}+1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}=1.\end{array}\]Example 1.
Property 1 (Idempotency).
Proof.
(19)
\[\begin{aligned}{}{\mathit{IVPFMM}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})=& {\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} =& {\bigg(\frac{1}{n!}n!{\tilde{p}^{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}=\tilde{p}.\end{aligned}\]Property 2 (Monotonicity).
Proof.
(22)
\[ \bigg(\sum \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{p}_{j}})}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\geqslant \bigg(\sum \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{q}_{j}})}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}.\](23)
\[\begin{array}{l}\displaystyle \Bigg(\sqrt{1-\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{p}_{j}})}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}{\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}\leqslant {\Bigg(\sqrt{{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}\big({\mu _{\varphi ({\tilde{q}_{j}})}^{R}}\bigg)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}.\end{array}\](24)
\[\begin{array}{l}\displaystyle \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi ({\tilde{p}_{j}})}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\\ {} \displaystyle \hspace{1em}\geqslant \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi ({\tilde{q}_{j}})}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\](25)
\[\begin{array}{l}\displaystyle {\Bigg(\sqrt{1-\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{p}_{j}})}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}\leqslant {\Bigg(\sqrt{1-\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{q}_{j}})}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\end{array}\](26)
\[\begin{array}{l}\displaystyle {\Bigg(\sqrt{1-\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{p}_{j}})}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \geqslant {\Bigg(\sqrt{1-\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big({\mu _{\varphi ({\tilde{q}_{j}})}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\end{array}\]Property 3 (Boundedness).
3.2 IVPFWMM Operator
Definition 8.
(28)
\[ {\mathit{IVPFMM}_{w}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})={\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}.\]Theorem 3.
(29)
\[\begin{array}{l}\displaystyle {\mathrm{IVPFWMM}_{w}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\cdots {\tilde{p}_{n}})={\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{\big(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}}\big)^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\Bigg(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right],\right.\\ {} \displaystyle \hspace{2em}\left.\left[\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{-0.1667em}\hspace{-0.1667em},\\ {} \sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\hspace{-0.1667em}\right]\hspace{-0.1667em}\right).\end{array}\]Proof.
(30)
\[ n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}}=\left(\begin{array}{l}\left[\begin{array}{l}\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\vartheta (j)}}}}},\\ {} \sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\vartheta (j)}}}}}\end{array}\right],\\ {} \Big[{\big({v_{\varphi (j)}^{L}}\big)^{n{w_{\vartheta (j)}}}},{\big({v_{\varphi (j)}^{R}}\big)^{n{w_{\vartheta (j)}}}}\Big]\end{array}\right),\](31)
\[\begin{array}{l}\displaystyle {(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}})^{{\pi _{j}}}}\\ {} \displaystyle \hspace{1em}=\left(\begin{array}{l}\Big[{\Big(\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}}\Big)^{{\pi _{j}}}},{\Big(\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}}\Big)^{{\pi _{j}}}}\Big],\\ {} \Big[\sqrt{1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}},\sqrt{1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\Big]\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right).\end{array}\](32)
\[\begin{array}{l}\displaystyle {\prod \limits_{j=1}^{n}}{(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}})^{{\pi _{j}}}}\\ {} \displaystyle \hspace{1em}=\left(\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\Bigg[{\textstyle\prod \limits_{j=1}^{n}}{\Big(\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}}\hspace{0.1667em}\Big)^{{\pi _{j}}}}\hspace{-0.1667em}\hspace{-0.1667em},{\textstyle\prod \limits_{j=1}^{n}}{\Big(\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}}\hspace{0.1667em}\Big)^{{\pi _{j}}}}\hspace{-0.1667em}\hspace{-0.1667em}\Bigg],\\ {} \Bigg[\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}},\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\hspace{0.1667em}\Bigg]\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\right),\end{array}\](33)
\[\begin{array}{l}\displaystyle \sum \limits_{\phi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}})^{{\pi _{j}}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\begin{array}{l}\sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)},\\ {} \sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)}\end{array}\right],\right.\\ {} \displaystyle \hspace{2em}\left.\left[\begin{array}{l}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}},\\ {} \textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\end{array}\right]\right).\end{array}\](34)
\[\begin{array}{l}\displaystyle \frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}})^{{\pi _{j}}}}\\ {} \displaystyle \hspace{1em}=\Bigg(\Bigg[\sqrt{1-\bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\phi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}},\\ {} \displaystyle \hspace{2em}\sqrt{1-\bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\phi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg],\\ {} \displaystyle \hspace{2em}\Bigg[{\Bigg(\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\prod \limits_{j=1}^{n}}\big(1-\big({\nu _{\phi (j)}^{L}}{\bigg)^{2n{w_{\varphi (j)}}}}{\bigg)^{{\pi _{j}}}}}\Bigg)^{\frac{1}{n!}}},\\ {} \displaystyle \hspace{2em}{\Bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\nu _{\phi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{n!}}}\Bigg]\Bigg).\end{array}\](35)
\[\begin{array}{l}\displaystyle {\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (j)}})^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\Bigg(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}{\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {(\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}})^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right],\right.\\ {} \displaystyle \hspace{2em}\left.\left[\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\Bigg(\sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{0.1667em}\Bigg),\\ {} \Bigg(\sqrt{1-{\bigg(1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{0.1667em}\Bigg)\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right]\hspace{-0.1667em}\right)\end{array}\](36)
\[ 0\leqslant {\Bigg(\sqrt{1-{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\leqslant 1,\](37)
\[ 0\leqslant \sqrt{1-{\bigg(1-{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\leqslant 1.\](38)
\[\begin{array}{l}\displaystyle {\Bigg({\Bigg(\sqrt{1-{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\hspace{0.1667em}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}+{\Bigg(\sqrt{1-{\bigg(1-{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}\leqslant {\Bigg({\Bigg(\sqrt{1-{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}+{\Bigg(\sqrt{1-{\bigg(1-{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}=1.\end{array}\]Example 2.
Property 4 (Monotonicity).
Property 5 (Boundedness).
(40)
\[\begin{aligned}{}{\mathit{IVPFWMM}_{W}^{\pi }}\big({\tilde{p}_{1}^{-}},{\tilde{p}_{2}^{-}},\dots ,{\tilde{p}_{n}^{-}}\big)\leqslant & {P2\mathit{TLWMM}_{W}^{\pi }}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})\\ {} \leqslant & {P2\mathit{TLWMM}_{W}^{\pi }}\big({\tilde{p}_{1}^{+}},{\tilde{p}_{2}^{+}},\dots ,{\tilde{p}_{n}^{+}}\big).\end{aligned}\]3.3 IVPFDMM Operator
Definition 9.
(41)
\[ {\mathit{DMM}^{[\pi ]}}({\alpha _{1}},{\alpha _{2}},\dots ,{\alpha _{n}})=\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\Bigg({\sum \limits_{j=1}^{n}}{\pi _{j}}{\alpha _{\varphi (j)}}\Bigg)^{\frac{1}{n!}}},\]Definition 10.
(42)
\[ \mathrm{IVPFDM}{\mathrm{M}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\cdots \hspace{0.1667em},{\tilde{p}_{n}})=\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\Bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}}\Bigg)^{\frac{1}{n!}}}.\]Theorem 4.
(43)
\[\begin{array}{l}\displaystyle \mathrm{IVPFDM}{\mathrm{M}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})=\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}}\bigg)^{\frac{1}{n!}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}},\\ {} \sqrt{1-{\Bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\right],\right.\\ {} \displaystyle \hspace{2em}\left.\left[\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\right]\right).\end{array}\]Proof.
(44)
\[ {\pi _{j}}{\tilde{p}_{\varphi (j)}}=\left(\substack{\Big[\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}},\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\hspace{0.1667em}\Big],\\ {} \big[{\big({v_{\varphi (j)}^{L}}\big)^{{\pi _{j}}}},{\big({v_{\varphi (j)}^{R}}\big)^{{\pi _{j}}}}\big]}\right),\](45)
\[\begin{aligned}{}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}}=& \left(\hspace{-0.1667em}\hspace{-0.1667em}\substack{\Bigg[\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}},\hspace{-0.1667em}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\Bigg],\\ {} \bigg[{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{L}}\big)^{{\pi _{j}}}},{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{{\pi _{j}}}}\hspace{0.1667em}\bigg]}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\right)\hspace{-0.1667em}.\end{aligned}\](46)
\[ \prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\sigma (j)}}=\left(\begin{array}{l}\left[\begin{array}{l}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}},\\ {} \textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\end{array}\right],\\ {} \left[\begin{array}{l}\sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)},\\ {} \sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)}\end{array}\right]\end{array}\right),\](47)
\[\begin{aligned}{}{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}}\bigg)^{\frac{1}{n!}}}=& \left(\left[\begin{array}{l}{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}}\bigg)^{\frac{1}{n!}}},\\ {} {\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}}\bigg)^{\frac{1}{n!}}}\end{array}\right],\right.\\ {} & \left.\left[\begin{array}{l}\sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}},\\ {} \sqrt{1-{\bigg(\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\end{array}\right]\right),\end{aligned}\](48)
\[\begin{array}{l}\displaystyle \frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}}\bigg)^{\frac{1}{n!}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}},\\ {} \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\right],\right.\\ {} \displaystyle \hspace{2em}\left.\left[\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{L}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\right]\right).\end{array}\](49)
\[ 0\leqslant \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\leqslant 1,\](50)
\[ 0\leqslant {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\leqslant 1.\](51)
\[\begin{array}{l}\displaystyle {\Bigg(\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{0.1667em}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}+{\Bigg({\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big({v_{\varphi (j)}^{R}}\big)^{2{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}\leqslant 1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\bigg)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}+{\bigg(1-{\bigg(\hspace{0.1667em}m\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}=1.\end{array}\]Example 3.
Property 7 (Monotonicity).
Property 8 (Boundedness).
3.4 IVPFWDMM Operator
Definition 11.
(55)
\[ {\mathrm{IVPFWDMM}_{w}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})=\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}\bigg)^{\frac{1}{n!}}}.\]Theorem 5.
(56)
\[\begin{array}{l}\displaystyle {\mathrm{IVPFWDMM}_{W}^{[\pi ]}}=\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}\bigg)^{\frac{1}{n!}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{-0.1667em},\\ {} \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right]\right.\\ {} \displaystyle \hspace{2em}\left.\left[\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\hspace{-0.1667em},\\ {} {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right]\hspace{-0.1667em}\right)\hspace{-0.1667em}.\end{array}\]Proof.
(57)
\[ {\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}=\left(\begin{array}{l}\left[\begin{array}{l}\sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}},\\ {} \sqrt{1-{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\end{array}\right]\\ {} \left[\begin{array}{l}{\Big(\sqrt{1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}}\hspace{0.1667em}\Big)^{{\pi _{j}}}},\\ {} {\Big(\sqrt{1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}}\hspace{0.1667em}\Big)^{{\pi _{j}}}}\end{array}\right]\end{array}\right),\](58)
\[ {\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}=\left(\begin{array}{l}\left[\begin{array}{l}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\\ {} \sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\end{array}\right]\\ {} \left[\begin{array}{l}{\textstyle\prod \limits_{j=1}^{n}}{\Big(\sqrt{1-{\big(1-{({v_{\varphi (j)}^{L}})^{2}}\big)^{n{w_{\varphi (j)}}}}}\hspace{0.1667em}\Big)^{{\pi _{j}}}},\\ {} {\textstyle\prod \limits_{j=1}^{n}}{\Big(\sqrt{1-{\big(1-{({v_{\varphi (j)}^{R}})^{2}}\big)^{n{w_{\varphi (j)}}}}}\Big)^{{\pi _{j}}}}\end{array}\right]\end{array}\right).\](59)
\[\begin{aligned}{}\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}=& \left(\left[\begin{array}{l}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}},\\ {} \textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\end{array}\right]\right.\\ {} & \left.\left[\begin{array}{l}\sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)},\\ {} \sqrt{1-\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)}\end{array}\right]\right),\end{aligned}\](60)
\[\begin{array}{l}\displaystyle {\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}\bigg)^{\frac{1}{n!}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\begin{array}{l}{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\bigg)^{\frac{1}{n!}}},\\ {} {\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\sqrt{1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}}\bigg)^{\frac{1}{n!}}}\end{array}\right],\right.\\ {} \displaystyle \hspace{2em}\left.\left[\begin{array}{l}\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}},\\ {} \sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\end{array}\right]\right).\end{array}\](61)
\[\begin{array}{l}\displaystyle \frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (j)}^{n{w_{\varphi (j)}}}}\bigg)^{\frac{1}{n!}}}\\ {} \displaystyle \hspace{1em}=\left(\left[\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{-0.1667em}\hspace{-0.1667em},\\ {} \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right]\right.\\ {} \displaystyle \hspace{2em}\left.\left[\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\hspace{-0.1667em}\hspace{-0.1667em},\\ {} {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right]\hspace{-0.1667em}\hspace{-0.1667em}\right).\end{array}\](62)
\[ 0\leqslant \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\leqslant 1,\](63)
\[ 0\leqslant {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\leqslant 1.\](64)
\[\begin{array}{l}\displaystyle {\Bigg(\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{0.1667em}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}+{\Bigg({\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (j)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\hspace{0.1667em}\Bigg)^{2}}\\ {} \displaystyle \hspace{1em}\leqslant 1-{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} \displaystyle \hspace{1em}+{\bigg(1-{\bigg(\hspace{0.1667em}\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}=1.\end{array}\]Example 4.
Property 9 (Monotonicity).
Property 10 (Boundedness).
(66)
\[\begin{aligned}{}{\mathrm{IVPFWDMM}_{w}^{[\pi ]}}\big({\tilde{p}^{-}},{\tilde{p}^{-}},\dots ,{\tilde{p}^{-}}\big)\leqslant & {\mathrm{IVPFWDMM}_{w}^{[\pi ]}}({\tilde{p}_{1}},{\tilde{p}_{2}},\dots ,{\tilde{p}_{n}})\\ {} \leqslant & {\mathrm{IVPFWDMM}_{w}^{[\pi ]}}\big({\tilde{p}^{+}},{\tilde{p}^{+}},\dots ,{\tilde{p}^{+}}\big).\end{aligned}\]4 Models for MADM with IVPFNs
(67)
\[\begin{aligned}{}{\tilde{p}_{i}}=& {\mathrm{IVPFWMM}_{w}^{[\pi ]}}({\tilde{p}_{i1}},{\tilde{p}_{i2}},\dots ,{\tilde{p}_{in}})={\bigg(\frac{1}{n!}\sum \limits_{\varphi \in {\phi _{n}}}{\prod \limits_{j=1}^{n}}{(n{w_{\varphi (j)}}{\tilde{p}_{\varphi (ij)}})^{{\pi _{j}}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\\ {} =& \left(\left[\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (ij)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({\mu _{\varphi (ij)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\right],\right.\\ {} & \left.\left[\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (ij)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\hspace{-0.1667em}\hspace{-0.1667em},\\ {} \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({v_{\varphi (ij)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\sum \limits_{j=1}^{n}}{\pi _{j}}}}}}\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\right]\hspace{-0.1667em}\hspace{-0.1667em}\right)\end{aligned}\](68)
\[\begin{aligned}{}{\tilde{p}_{i}}=& {\mathrm{IVPFWDMM}_{W}^{[\pi ]}}({\tilde{p}_{i1}},{\tilde{p}_{i2}},\dots ,{\tilde{p}_{in}})=\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}{\bigg(\prod \limits_{\varphi \in {\phi _{n}}}{\sum \limits_{j=1}^{n}}{\pi _{j}}{\tilde{p}_{\varphi (ij)}^{n{w_{\varphi (j)}}}}\bigg)^{\frac{1}{n!}}}\\ {} =& \left(\left[\begin{array}{l}\sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{L}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}},\\ {} \sqrt{1-{\bigg(1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{\varphi (j)}^{R}}\big)^{2n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}\bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}}\end{array}\right]\right.\\ {} & \left.\left[\begin{array}{l}{\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (ij)}^{L}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}},\\ {} {\Bigg(\sqrt{1-{\bigg(\hspace{0.1667em}\textstyle\prod \limits_{\varphi \in {\phi _{n}}}\bigg(1-{\textstyle\prod \limits_{j=1}^{n}}{\big(1-{\big(1-{\big({v_{\varphi (ij)}^{R}}\big)^{2}}\big)^{n{w_{\varphi (j)}}}}\big)^{{\pi _{j}}}}\bigg)\bigg)^{\frac{1}{n!}}}}\hspace{0.1667em}\Bigg)^{\frac{1}{{\textstyle\textstyle\sum _{j=1}^{n}}{\pi _{j}}}}}\end{array}\right]\right)\end{aligned}\]5 Numerical Example and Comparative Analysis
5.1 Numerical Example
Table 1
C1 | C2 | C3 | C4 | |
O1 | ([0.40, 0.50], | ([0.30, 0.60], | ([0.10, 0.30], | ([0.50, 0.60], |
[0.60, 0.80]) | [0.40, 0.50]) | [0.50, 0.60]) | [0.50, 0.70]) | |
O2 | ([0.40, 0.70], | ([0.60, 0.70], | ([0.60, 0.70], | ([0.70, 0.80], |
[0.20, 0.50]) | [0.10, 0.40]) | [0.10, 0.20]) | [0.50, 0.60]) | |
O3 | ([0.50, 0.70], | ([0.20, 0.50], | ([0.40, 0.50], | ([0.30, 0.60], |
[0.10, 0.50]) | [0.50, 0.70]) | [0.10, 0.30]) | [0.10, 0.20]) | |
O4 | ([0.40, 0.80], | ([0.10, 0.60], | ([0.10, 0.40], | ([0.40, 0.60], |
[0.10, 0.20]) | [0.20, 0.30]) | [0.30, 0.50]) | [0.20, 0.60]) | |
O5 | ([0.40, 0.60], | ([0.10, 0.40] | ([0.40, 0.70], | ([0.40, 0.60], |
[0.20, 0.40]) | [0.50, 0.70]) | [0.30, 0.50]) | [0.50, 0.80]) |
Table 2
O1 | O2 | O3 | O4 | O5 | |
IVPFMM | ([0.2799, 0.4827], | ([0.5639, 0.7238], | ([0.3316, 0.5695], | ([0.2013, 0.5833], | ([0.2843, 0.5639], |
[0.5082, 0.6742]) | [0.2872, 0.4590]) | [0.2742, 0.4882]) | [0.2129, 0.4411]) | [0.4029, 0.6448]) | |
IVPFWMM | ([0.2622, 0.4556], | ([0.5266, 0.6773], | ([0.3125, 0.5362], | ([0.1893, 0.5542], | ([0.2672, 0.5262], |
[0.5680, 0.7080]) | [0.2972, 0.5247]) | [0.4412, 0.6065]) | [0.3110, 0.4671]) | [0.4890, 0.6842]) | |
IVPFDMM | ([0.3627, 0.5220], | ([0.5936, 0.7297], | ([0.3719, 0.5874], | ([0.2960, 0.6370], | ([0.3529, 0.5936], |
[0.4951, 0.6407]) | [0.1789, 0.3947]) | [0.1505, 0.3820]) | [0.1865, 0.3673]) | [0.3508, 0.5794]) | |
IVPFWDMM | ([0.4394, 0.5960], | ([0.6367, 0.7600], | ([0.4396, 0.6400], | ([0.3400, 0.6929], | ([0.3750, 0.6280], |
[0.4657, 0.6007]) | [0.1674, 0.3695]) | [0.1426, 0.3673]) | [0.1756, 0.3416]) | [0.3301, 0.5410]) |
Table 3
O1 | O2 | O3 | O4 | O5 | Order | |
IVPFMM | 0.3996 | 0.6372 | 0.5302 | 0.5352 | 0.4552 | O2>O4>O3>O5>O1 |
IVPFWMM | 0.3631 | 0.5931 | 0.4557 | 0.507 | 0.4102 | O2>O4>O3>O5>O1 |
IVPFDMM | 0.4371 | 0.6743 | 0.5787 | 0.5809 | 0.5046 | O2>O4>O3>O5>O1 |
IVPFWDMM | 0.4926 | 0.7046 | 0.6119 | 0.612 | 0.5333 | O2>O4>O3>O5>O1 |
5.2 Influence Analysis
Table 4
$({\pi _{1}},{\pi _{2}},{\pi _{3}},{\pi _{4}})$ | Scores | Order | ||||
${O_{1}}$ | ${O_{2}}$ | ${O_{3}}$ | ${O_{4}}$ | ${O_{5}}$ | ||
(1,0,0,0) | 0.4295 | 0.6829 | 0.5952 | 0.5661 | 0.512 | ${O_{2}}$>${O_{4}}$>${O_{3}}$>${O_{5}}$>${O_{1}}$ |
(2,0,0,0) | 0.4578 | 0.7032 | 0.608 | 0.5837 | 0.5324 | ${O_{2}}$>${O_{4}}$>${O_{3}}$>${O_{5}}$>${O_{1}}$ |
(3,0,0,0) | 0.4817 | 0.721 | 0.6172 | 0.5966 | 0.5468 | ${O_{2}}$>${O_{4}}$>${O_{3}}$>${O_{5}}$>${O_{1}}$ |
(1,1,0,0) | 0.393 | 0.6246 | 0.5469 | 0.5391 | 0.4764 | ${O_{2}}$>${O_{4}}$>${O_{3}}$>${O_{5}}$>${O_{1}}$ |
(1,1,1,0) | 0.3748 | 0.6051 | 0.5041 | 0.5194 | 0.4475 | ${O_{2}}$>${O_{4}}$>${O_{3}}$>${O_{5}}$>${O_{1}}$ |
(1,1,1,1) | 0.3624 | 0.5923 | 0.4534 | 0.5062 | 0.4084 | O2>O4>O3>O5>O1 |
Table 5
$({\pi _{1}},{\pi _{2}},{\pi _{3}},{\pi _{4}})$ | Scores | Order | ||||
${O_{1}}$ | ${O_{2}}$ | ${O_{3}}$ | ${O_{4}}$ | ${O_{5}}$ | ||
(1,0,0,0) | 0.3909 | 0.6347 | 0.5647 | 0.5185 | 0.4677 | ${O_{2}}$>${O_{3}}$>${O_{4}}$>${O_{5}}$>${O_{1}}$ |
(2,0,0,0) | 0.3744 | 0.5975 | 0.5519 | 0.4927 | 0.4405 | ${O_{2}}$>${O_{3}}$>${O_{4}}$>${O_{5}}$>${O_{1}}$ |
(3,0,0,0) | 0.362 | 0.5708 | 0.5412 | 0.4745 | 0.4172 | ${O_{2}}$>${O_{3}}$>${O_{4}}$>${O_{5}}$>${O_{1}}$ |
(1,1,0,0) | 0.4442 | 0.6742 | 0.5931 | 0.5678 | 0.5113 | ${O_{2}}$>${O_{3}}$>${O_{4}}$>${O_{5}}$>${O_{1}}$ |
(1,1,1,0) | 0.4691 | 0.6921 | 0.6054 | 0.5979 | 0.5242 | ${O_{2}}$>${O_{3}}$>${O_{4}}$>${O_{5}}$>${O_{1}}$ |
(1,1,1,1) | 0.494 | 0.7054 | 0.6124 | 0.613 | 0.5339 | O2>O4>O3>O5>O1 |
5.3 Comparative Analysis
Definition 12.
(69)
\[\begin{aligned}{}{\tilde{r}_{i}}=& \mathrm{IVPFW}{\mathrm{A}_{w}}({\tilde{r}_{i1}},{\tilde{r}_{i2}},\dots ,{\tilde{r}_{in}})\\ {} =& {\underset{j=1}{\overset{n}{\bigoplus }}}({w_{j}}{\tilde{r}_{ij}})\\ {} =& \Bigg(\Bigg[\sqrt{1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{ij}^{L}}\big)^{2}}\big)^{{w_{j}}}}},\sqrt{1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\mu _{ij}^{R}}\big)^{2}}\big)^{{w_{j}}}}}\hspace{0.1667em}\Bigg],\\ {} & \Bigg[{\prod \limits_{j=1}^{n}}{\big({\nu _{ij}^{L}}\big)^{{w_{j}}}},{\prod \limits_{j=1}^{n}}{\big({\nu _{ij}^{R}}\big)^{{w_{j}}}}\Bigg]\Bigg),\hspace{1em}i=1,2,\dots ,m,\end{aligned}\](70)
\[\begin{aligned}{}{\tilde{r}_{i}}=& \mathrm{IVPFW}{\mathrm{G}_{W}}({\tilde{r}_{i1}},{\tilde{r}_{i2}},\dots ,{\tilde{r}_{in}})={\underset{j=1}{\overset{n}{\bigotimes }}}{({\tilde{r}_{ij}})^{{w_{j}}}}\\ {} =& \Bigg(\Bigg[{\prod \limits_{j=1}^{n}}{\big({\mu _{ij}^{L}}\big)^{{w_{j}}}},{\prod \limits_{j=1}^{n}}{\big({\mu _{ij}^{R}}\big)^{{w_{j}}}}\Bigg],\Bigg[\sqrt{1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\nu _{ij}^{L}}\big)^{2}}\big)^{{w_{j}}}}},\\ {} & \sqrt{1-{\prod \limits_{j=1}^{n}}{\big(1-{\big({\nu _{ij}^{R}}\big)^{2}}\big)^{{w_{j}}}}}\Bigg]\Bigg),\hspace{1em}i=1,2,\dots ,m.\end{aligned}\]Table 6
IVPFWA | IVPFWG | |
${O_{1}}$ | ([0.3872,0.5156],[0.5071,0.6637]) | ([0.2804,0.4699],[0.5149,0.6861]) |
${O_{2}}$ | ([0.6188,0.7459],[0.2187,0.3995]) | ([0.5885,0.7384],[0.3457,0.4831]) |
${O_{3}}$ | ([0.3751,0.5902],[0.1175,0.3075]) | ([0.3478,0.5753],[0.1926,0.3949]) |
${O_{4}}$ | ([0.3208,0.6173],[0.1966,0.4255]) | ([0.2297,0.5627],[0.2224,0.496]) |
${O_{5}}$ | ([0.3822,0.621],[0.3571,0.5968]) | ([0.3482,0.6034],[0.4062,0.6705]) |
Table 7
IVPFWA | IVPFWG | |
${O_{1}}$ | 0.4295 | 0.3909 |
${O_{2}}$ | 0.6829 | 0.6347 |
${O_{3}}$ | 0.5952 | 0.5647 |
${O_{4}}$ | 0.5661 | 0.5185 |
${O_{5}}$ | 0.512 | 0.4677 |
Table 8
Order | |
IVPFWA | ${O_{2}}>{O_{3}}>{O_{4}}>{O_{5}}>{O_{1}}$ |
IVPFWG | ${O_{2}}>{O_{3}}>{O_{4}}>{O_{5}}>{O_{1}}$ |