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Abstract. In this paper, we extend MM operator and dual MM (DMM) operator to process the
interval-valued Pythagorean fuzzy numbers (IVPFNs) and then to solve the MADM problems.
Firstly, we develop some interval-valued Pythagorean fuzzy Muirhead mean operators by extending
MM and DMM operators to IVPENs. Then, we prove some properties and discuss some special
cases with respect to the parameter vector. Moreover, we present some new methods to deal with
MADM problems with the IVPFNs based on the proposed MM and DMM operators. Finally, we
verify the validity and reliability of our methods by using an application example for green supplier
selections, and analyse the advantages of our methods by comparing it with other existing methods.
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1. Introduction

Atanassov (1986) defined the intuitionistic fuzzy set (IFS) based on the fuzzy set (Zadeh,
1965) such that its sum is not greater than one. After it was defined, researchers have ap-
plied these theories in different disciplines (Xu, 2007; Xu and Yager, 2006; Li et al., 2018a;
Garg and Arora, 2018; Ngan et al., 2018; Li and Chen, 2018; Liu et al., 2018; Arya and
Yadav, 2018; Baccour, 2018; Kahraman et al., 2018; Jafarian et al., 2018; Xia, 2018;
Hao and Chen, 2018; Xian et al., 2018; Deng et al., 2018a) and found that they are more
productive to handle the uncertainties during the analysis. Although the above theories
have been successfully defined, in some cases, they are unable to handle the situation by
IFS. For instance, if a decision maker (DM) takes the membership degrees of any element
as 0.8 and 0.5, then clearly their sum is not less than one. Hence, under such types of
cases, IFS has some sort of deficiencies. In order to solve it, Pythagorean fuzzy set (PFS)
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(Yager, 2013, 2014), an extension of IFSs, has appeared as a good tool for describing the
indeterminacy in uncertain MADM. For this set, the condition of the sum of the degrees
is replaced with their sum of squares, which should be less than one and hence the PFS is
more general than the IFS. Further, it is clear that 0.82 4+ 0.5%2 < 1 and hence PFS stand,
for such cases. After its appearance, Zhang and Xu (2014) presented the PFS TOPSIS for
MADM. Zhang (2016a) presented PFS similarity measure for solving MADM. Peng and
Yang (2015) developed some fundamental properties of the PFNs. Reformat and Yager
(2014) used the PFSs in solving the recommender system. Zeng et al. (2014) developed
a hybrid method for Pythagorean fuzzy MADM. Garg (2016a, 2017b) proposed some
generalized PFS aggregation operators based on Einstein Operations. Zhang (2016b) ex-
tended the PFS to the interval-valued PFSs (IVPESs). Garg (2016b) presented some ag-
gregation operators with IVPENs. Also, a new accuracy function has been presented to
rank the IVPFNs. However, in terms of the information measure theory, a novel accuracy
function (Garg, 2016b), correlation coefficient (Garg, 2016c¢), improved accuracy function
(Garg, 2017a) were introduced. Li et al. (2018b) defined the Hamy Mean Operators with
PFNs. Li et al. (2018c¢) extended the methods of Li et al. (2018b) to IVPFNs. Wei and Lu
(2018a) defined the power aggregation operators with PFNs. Gao et al. (2018b) developed
some novel interaction aggregation operators with PENs. Wei and Lu (2018b) presented
Maclaurin Symmetric Mean Operators with PFNs. Wei and Wei (2018a) defined the sim-
ilarity measures of PFSs. Gao (2018) introduced the Hamacher prioritized operators with
PFNs. Wei et al. (2018a) proposed some Pythagorean hesitant fuzzy Hamacher operators.
Wei and Lu proposed some dual hesitant Pythagorean fuzzy Hamacher aggregation op-
erators. Lu et al. (2017) defined some hesitant Pythagorean fuzzy Hamacher operators.
Some MADM models with Pythagorean 2-tuple linguistic information are defined in Wei
etal. (2017a), Huang and Wei (2018), Tang and Wei (2018). Some MADM methods with
2-tuple linguistic Pythagorean fuzzy information are proposed in Deng et al. (2018b),
Wang et al. (2018a). Wang et al. (2018a) proposed some Heronian mean operators with
g-Rung Orthopair Fuzzy information.

In some real MADM problems, there exist interrelationships among the attributes.
Bonferroni mean (BM) operators (Bonferroni, 1950; Liu et al., 2017; Wang et al., 2018b;
Wei, 2017a, 2017b; Jiang and Wei, 2017; Wei et al., 2013) and the Heronian mean (HM)
(Yu, 2012; Liu et al., 2013, 2014; Yu et al., 2015; Chu and Liu, 2015) operators pro-
vided a tool to consider interrelationships of aggregated arguments; however, they can
only consider interrelationships between two attributes and cannot process interrelation-
ships among three or more than three attributes. Muirhead mean (MM) (Muirhead, 1902)
is a well-known aggregation operator which can consider interrelationships among any
number of arguments assigned by a variable vector, and some existing operators, such
as arithmetic and geometric operators (not considering the interrelationships), both BM
operator and Maclaurin symmetric mean (Maclaurin, 1729) are the special cases of MM
operator. Thus, the MM can offer a robust and flexible mechanism to deal with the infor-
mation fusion problem and make it more adequate to cope with MADM. However, the
original MM can only deal with the numeric arguments. Qin and Liu (2016) extended the
MM operator to process the 2-tuple linguistic information, and proposed some 2-tuple
linguistic MM operators and apply the proposed operators to solve the MADM problems.
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Because IVPFNs can easily describe the fuzzy information, and the MM operator and
the dual MM (DMM) operator can capture interrelationships among any number of ar-
guments assigned by a variable vector, it is necessary to expand the MM and the DMM
operators to deal with the IVPFNs. The purpose of this paper is to propose some [VPF
MM operators by extending the MM and the DMM operators to IVPENs, then to study
some properties of these operators, and apply them to cope with the IVPFN MADM.

In order to achieve this purpose, the rest of this paper is set out as follows. Section 2
introduces the basic definitions and theory of IVPFSs. In Section 3, we propose the some
MM and DMM operators with IVPFNs, and study some good properties of these proposed
operators. In Section 4, we propose two MADM methods for IVPFNs with the PFWMM
operator and PFEWDMM operator. In Section 5, an illustrative example for green supplier
selections is given to verify the validity of the proposed methods. In Section 6, we give
some conclusions of this study.

2. Basic Concepts

In this section, we introduce some fundamental concept of IVPFSs and MM, which will
be used in the next section. These concepts base on a fixed set X.

2.1. Pythagorean Fuzzy Set (PFS)

DerintTION 1. (See Yager, 2013, 2014.) A PFS P is defined as

P ={(x, (1p(0), vp(0))|x € X}, (D

where the function, p, : X — [0, 1] defines the degree of membership and the function
vp : X — [0, 1] defines the degree of non-membership of the element x € X to P, respec-
tively, and, for every x € X, the condition (;L,,)2 + (v,,)2 < 1 holds.

DerintTION 2. (See Ren et al., 2016.) The p = (i, v) is called a Pythagorean fuzzy
number (PEN) and defines the score and accuracy functions as S(p) = u> — v? and
H (p) = u?* 4+ v2. In order to compare two or more PENs p; and p», a comparison law is
defined as

(1) if S(p1) < S(p2), then p; < pa;

(2) if S(p1) = S(p2), then
(@) if H(p1) = H(p2), then p; = pa;
(b) if H(p1) < H(p2), then p; < pa.

2.2. Interval Valued Pythagorean Fuzzy Set (IVPFS)

Lang ef al. (2015) extended the PFS to the IVPFSs which are defined as follows over the
fixed set X.
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DeFiniTION 3. (See Lang ef al., 2015.) An IVPES p is defined as
p={{x (25, 93(0))|x € X}, 2

where fi;(x) = [ug(x), Mg(x)], V5(x) = [vg(x), vg(x)] are the interval numbers of
[0, 1] with the condition 0 < (,ﬂ;(x))z + (u§(x))2 < 1, Vx € X. The pair p =
([Mg, M}’;’], [vg, u}f]) is called an IVPF number (IVPFN), where x5, v;5 € [0, 1] and
() + < 1.

DEerINITION 4. (See Garg, 2016b.) For three IVPFNs p; = ([Mgl ) Hgl], [vl{;l, vgl D, p2=

L R L R ~ o L R L R . : _
([“ﬁz’ /Lﬁz], [vﬁz, vﬁz]), and p = ([uﬁ, uﬁ], [vl5 V5 1), the basic operational laws are de
fined as follows:

W 1072 = ([ eh)? + ()~ (Pt
Y 4 a8 ) = (52 2]. [ ok ]

~ ~ 2 2 2 2
2) p1®p2= ([vglugz’uglul];l]’ [\/(Ul{;l) + vléz) - (vl{;l) (VII~;2) ’

&) (P = ([vg. vy ] [nf. n5])-

Based on the Definition 4, Garg (2016b) derived the following properties easily.
~ o, L R L R ~ o L R L R
Theorem 1. Let p1 = ([/Lﬁ ,,uﬁl], [Vﬁl’ Uﬁl])’ and py = ([/Lﬁ2, /Lﬁz], [vﬁz, vﬁz]) be two
IVPFNs, ,my, mp > 0 be three real numbers, then

(1) p1® p2=p2® p1;

(2) p1®p2=p2® p1;

(3) n(p1® p2) =mwp1 ®7P2;
@ (p1®p2)" =(PD* @ (P2)”;
(5) m1p1 @ m2p1 = (M1 + m2) P1;
(6) ﬁ?l ®ﬁ?2 _ ﬁgﬂl-i-ﬂz)’.

D) Py = (p™7™.

DEFINITION 5. For an IVPFN p = ([/Lg, /Lg], [vl{;, vl{f]), the score and accuracy functions

of it are defined as S(p) = }T[(l + (/xllg)2 — (vllg)z) +(1+ (Mg)z - (Vg)z)], and H(p) =

W+ +0h + 08
2

, respectively. Further, in order to compare two different [IVPFNs
p1 and pa, an order relation is defined as
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(1) if S(p1) < S(p2), then p; < pa,
(2) if S(p1) = S(p2), then
(i) if H(p1) = H(p2), then py = pa,
(i) if H(p1) < H(p»), then p < pa.
2.3. Muirhead Mean (MM)
Muirhead (1902) proposed the MM operator.

DEeFINITION 6. (See Muirhead, 1902.) Letatj (j =1,2, ..., n) be agroup of crisp numbers

and [r] = (1, m2, ..., ;) € R, then the Muirhead mean (MM) operator is defined as
T _ j=1 7j
MM (Ol],Olz,...,Otn)—( ZH ¢(1)> , 3)
pePy j=1

where ¢(j) (j =1,2,...,n) is any permutation of (1,2, ...,n) and ¢, is set of all per-
mutations of (1,2,...,n).

By assigning some special vectors to r, we can obtain some special cases of the MM:
(HIfr=(1,0,...,0), the MM is reduced to

MMy, ) = = Za,, “)

which is the arithmetic averaging operator.
Q)Ifr=(,1,0,...,0), the MM is reduced to

1 n
1,1,0,...,0
MM o) = o Y. e, )
i,j=1;i#j
which is the BM operator.
k —k
—_—— /—n’%
Alfr=(1,1,...,1,0,0,...,0), the MM is reduced to

k n—k

R _ ) n g\ /K
MM(I,1,...,1,0,0,...,0)(0“’0{2’“.’0{"): <Zl<11<...<éfnnj—l t,z) . (6)

n

which is the Maclaurin symmetric mean (MSM) (Maclaurin, 1729) operator.
@Ilfr={/n,1/n,...,1/n), the MM is reduced to

n
MM(l/n’l/n’m’l/n)(ala a2, ..., al’l) = l_[(aj)l/n’ (7)
j=1

which is the arithmetic averaging operator.
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3. Interval Valued Pythagorean Fuzzy Muirhead Mean (IVPFMM) Operators
In this section, we shall develop some Muirhead mean operators with [IVPFNs.
3.1. IVPFMM Operator

The MM operator has usually been utilized in situations with interaction relationships.
Next, we extend MM operator to IVPFS. From Definitions 4 and 6, we can obtain:

Derinimion 7. Let ;= ([, uf1, [vE, vB]) (j = 12,...,n) be a set of IVPFNs
and [7] = (mq,m2,...,7Tx) € R be a vector of parameters then the interval valued
Pythagorean Fuzzy Mulrhead mean (IVPFMM) operator is defined as

IVPMM (51 ... ) = ( > ﬂﬁ%)) : ®
" pedn j=1

where ¢(j) (j =1,2,...,n) is any permutation of (1, 2,...,n) and ¢, is the collection
of all permutations of (1,2, ...,n).

Based on the operations of the IVPEN described, we can get the Theorem 2.

Theorem 2. Let p; = ([M/’ ] [vE s R]) (j =12,...,n) be a group of IVPFNs, then
the corresponding aggregated value by utlllzzng IVPFMM operator is also an IVPFN, and

1

||‘[\1=

IVPEMMY (1, pa, -+, p) = ( Z 1—[ ﬁ;f(’,))

" pepy j=1

1
n!

(=)
o1
(o)

C))
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Proof.
L 7y R j
(k)™ (%(/)) ']
~R T 2 Ty
G =] V1= =050 ] . (10)
2 Tj
\/1 w(/) )

) B n L A2\
H pZE/) \/1 - jl;[1 (1- (USO(J)) ) (in
j=
n 2 s
\/1 - '1_[1(] (Uso(J)) ) ]
Thereafter,
B n 27Tj
=TT (1= TT ()™ )
YEP, j=1
n 27‘[j ,
1= 1 (1= T (&)
7T YEPn =1
ST =| ¢ ’ "
_ D n L 2\
QEPy j=1 1_[ 1- 1_[ (1 - (v(ﬂ(l)) ) ’
§0€¢n /:1
n 2\
I \/1 ~ T (=)
_(ﬂ€¢n Jj=1

o Z Hﬁgf])

wecbn Jj=1

1— - — (vk, . z ,
wl;[ﬁnj Ail;ll(l (‘p("))) ;1 . (13)
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Therefore,

1
~TT Z"-: T
( ZH’%%/)) =

" pegy j=1

(14)
1 (1 <1—[ <] ﬁ (] ( R )2)ﬂj>>lV)Z’l 17T
(1- _ (R
N pedn \ j=l o) i
and then, we can know:
T nl Z/ j
0<< (H( H%mz’))) < as)
§0€¢n =1
1
n . % Z?:lﬂj
0< 1-(1—<H<1—]_[(1—(v§(i))2) ’)) ) 3 (16)
s j=1 ‘

We can obtain (/Lg(j))2 + (vq’f(j))2 < 1 from the definition of IVPFES, so

(T ) )

Z'; 177
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+1—<1—(1_[<1—1_[(1—(v

n
R
0(J)

YEDn Jj=1

We complete the proof.

1
n!

7))

A7)

O

ExampLE 1. Let x; = ([0.2,0.5],[0.4,0.6]), x» = ([0.4,0.6],[0.2,0.3]), and x3 =

(0.6, 0.8], 0.1, 0.2]) be three IVPENs, and 7 = (0.2, 0.5, 0.3), then we have

IVPFMM ™!

(x1, x2, x3)
1
0270.5103
1
(10294 % 0.41 % 0.600) x (1 — 0294 x 0.61 x 0.40-0)5 "\ 31
1— | (1-04%% <021 x0.600) x (1 -0.494 x 0.6 x 0.206)x
(1-0.6%% x 0.41 % 0.200) » (1 —0.694 x 0.2! x 0.406)
1
0270.5103
i
(1-0.5%4 x 0.6! % 0.800) x (1 —0.594 x 0.8 x 0.69-0)x \ 31
I — | (1-06%%x08! x0.5%0) x (1 -0.694 x 0.5! x 0.89-0)x
(1-0.8%4 % 0.5! % 0.69-0) x (1 —0.8%4 x 0.6! x 0.50-6)

1
0.2+0.5+0.3

N\

1
(1-0.8402 5 0.969-5 % 0.999-3) x (1 —0.849-2 x 0.990-3 x 0.960-3)x '\ 3!
1T— 1= (1-09692x 08403 x 0.999-3) x (1 —0.96%2 x 0.99%-5 x 0.840-3) x ,
(1-0.9992 5 0.96%-5 x 0.840-3) x (1 —0.999-2 x 0.840-5 x 0.969-3)
1
1\ 02405¥03

(1-0.6492 5 09105 % 0.960-3)
(1-0.9102 5 06495 x 0.960-3)
(1-0.9602 x 0.649-5 x 0.910-3)

(-

= ([0.3694, 0.62411, [0.2648, 0.4136]).

x (1 -0.640-2 % 0.969 x 0.910-3
x (1-0.910-2 % 0.960-3 x 0.649-3)
x (1-0.969-2 x 0.910-5 x 0.649-3)

In the following, we give some properties of [IVPFMM operator.

(j=1,2,...,n), then
IVPFMM"(p1, pa. ..., pn) = B.
Proof.
IVPFMM™ (51, pa, ..., pu) =

/ 17
‘ﬂ(l)
=1

)X)

O

@)

Property 1 (Idempotency). Let pj = (uj .y ). [y vi D) = p = (g ugl. vy viD),

(18)

19)
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Property 2 (Monotonicity). Let p; = ([M p, ] [ v ]) and q; = ([p, M ]
[q,-’ 5/]), (G=1,2,...,n) betwosetsofIVPFNs lf([L )2+(M )2 (p,qj)2+(p,qj)2,

L2 Ry2 > 2 R\2
and (vﬁj) +(vﬁj) (vqj) +(qu) then

IVPFMM™ (51, pa, ..., pn) <IVPFMMY(G1, G, ..., ). (20)
Proof.
I L TT )™ @)
“so(p, Ro@pn)
j=1 j=1
1 n 1
27T' n! 27 n!
(= (- TTwe™) = (2 (-TTwi)™))" e
YEDn j=1 peD, j=I1
Therefore

1
l_[ 2”1' "\ =7
so(p,

YEDn Jj=1

< ( = (T1(1- } (Mﬁw_,))znj))%)’l”- 23)

QEDy j=1

-
/_\
—
/_\

=

Similarly, we also can obtain

n L' Z;:]”r
1-(1— I1 1—]—[(1—(%@,))2) ’)) )
VEDn Jj=1
1
n N7 % Z?:l”/‘
> |1- (1— < [ (1— (1= (vf5,)) ’)) ) (24)
YEP, j=1

and

1

( - <1‘[< ﬁ W) 2n_,>>;z>m

YEDn Jj=1

1

< ( - ( I1 (1 - ﬁ (M&qj))zm))nl! )W =

QED j=1
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(J-(m (1_ﬁ%(ﬁj))z,,,>>na>ﬁ

YEPy Jj=1
1 1
n . 27, o Z?:l wj
(- (T (- T , @
YEPy Jj=1
then, the proof is completed. O
Then

(DI (g )2+ (e )? < (g )*+ (i) and (v )2+ ()2 > (07 )% + (v )?, then
IVPFMM™ (51, pa. ..., pn) < IVPFMMY(G1, G, ..., Gn).

QI (u§ )7+ ()P < (g P4 (uf % and (0F )2+ (0 )? = (] )2+ (f ), then
IVPFMMY(py, pa, ..., pu) < IVPEMMV(G1, G2, ..., Gn).

GYIF (s )+ (g )? = (g )+ (g )% and (7 )2+ (v )% > (v )+ (v )2, then
IVPEMM" (51, pa, ..., pn) < IVPFMMYV(G1, G, ..., Gn).

W (G )P+ ()P = (g 24 (uf % and 0F )2+ (0 )? > (] )2 4 (f )7, then
IVPFMMY(py, pa, ..., pu) = IVPFMM 7V (G1, G2, . .., Gn).

Property 3 (Boundedness). Let p; = ([,ugj,/tg], [vé_, vg_]), (j=1,2,...,n) be a
J J J
st (L (R oL Y min (uR S+
set of IVPFNs, lfpj = ([max; (,uﬁj),max] (/Lﬁj)], [min; (vﬁj),mm] (Vﬁj)])’ and pT =
([min; (Mllg_), min; (Mg_)], [max; (v’%_), max (vg_)]), According to the process of property
: : iW5; IW5;
of Monotonicity and Idempotency, it is easy to get that

Py SIVPEMM™ (1, P2, bn) < B} - @7
3.2. IVPFWMM Operator

In Section 3.1, it can be seen that the IVPFMM operator doesn’t consider the importance
of the aggregated arguments. However, in many real practical situations, especially in
multiple attribute decision making, the weights of attributes play an important role in the
process of aggregation. To overcome the limitation of IVPFMM, we shall develop the
interval valued Pythagorean fuzzy weighted MM (IVPFWMM) operator as follows.

DEFINITION 8. Let p; = ([MII;., MII;], [vé_, vl{fj]), (j=1,2,...,n) be a group of IVPFNs
: J J J

with weight w = (w1, wy, ..., wy)’, Y jwj=1land[7]=(m1,72,...,7,) € R, then
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the interval valued Pythagorean fuzzy weighted Muirhead mean (IVPFWMM) operator

is given as

1
1 - A\ T
(7]~ = - (T T j=17j
IVPEMM) (1, 2, . o) = (n! Z¢ ]_[1nw¢<,>p¢(g,~)) : (28)
PEPy J=

Theorem 3 can be derived by the operations of the [IVPFN.

Theorem 3. Let p; = ([,u ,u ] [ v ]) (j=1,2,...,n) be a collection of
IVPFNs, then the correspondzng aggregated value of IVPFWMM operator is also an

IVPFN, and
1

. - -7
IVPEWMM(™ (51, iy, - pn)—< Z]_[ nWy(j) Po())) ) e

§0€¢n] 1
i 1 lll 7]
n 2\ NWy(j) n! j:lnj
(1= (o (= oo m)) ),
_ YEP, j=1
= 1 7
1 n
n nw, b4 n! =170
L \ ‘pe(pn AI:1 i
_ -
1 2nwy(jy\ I % ?:lnj
(- (- o)) )T
\ S 1 . (29)
7 % Yham
(= (- o= ey ™))T) T
_\ YEP, j=1 |
Proof.
2\ MWy (j)
V1I=0- )™
oy pey = | | 1= (1= @k, || (30)
(v wu))nwﬁm’ (vg(; >)nww]
(nwe(j) Pe(j)™

[(\/ s 0 nw«,(,)) (\/ (- ﬁ”(”)z)nu_jw(h)nj]’ €Y
[\/1 oL )2"ww</> i \/1 (vg(j))hwwm)”f]

w(/




Models for Multiple Attribute Decision Making with Interval-Valued Pythagorean FMMO 165

Thereafter,

n
[ | weiiy o)™

Jj=1
i (=0 = ) @ (=00 ™)
\/ 1—[ w(l))Z"wwm) 1—[ ( ( w(l))Z"wwm) i|

9

(32)
> T ] weis Bo)™
pedn j=
eI (e F - ey ™)
YEDn Jj=1
/1 -1 (1= L= 0= )™ )
PEP, Jj=1
Znwy(j)\"
1 ( (‘/’(J)) ) ’
YEDn (33)

2, TG
1(1 NCHEN

T i :l

[T /1-
QEPy J
Then,

1 n ~ '
o Z l—[(nww(m’w(n)”-’

" pegy j=1

L

=<H1—<n<1—fw—«—waﬂfwf'))

(101 I

YEDn /:1

3=

“cb(]))z)nww(j))ﬂj))

1

[(gﬂl ' Ilj (1- (V£(j>)2nw¢(j)>ﬂj)n!,
< )

S|—

[ J - lﬁ (1- (”g(j>)2nw¢(j))n'f>



166 T. Xiyue et al.

Therefore,

1

Ly S\ TR
(E 2 [T owei pocin) ’) ]

YEPy j=1

- ( 1_<w1e_4[>n<l_jlill(l_(1_(“5(;‘))2)"%(”)@))%)%,

YEDn j=1

( 1_(1_<£L<1_i10—-@&hfwwmm)>%)2 ﬂ,)
(\ - (1 - <¢le_<[z>n <] B jlill (1- (Ug(j))hww(j))”j))l') Z” )

(35)

and we can get the followed easily:

1 1

- gy i \\ "\ =1 T
0<( <n< -[Ta-(- Mgo(n)z) ") >> ) <1 36)
j=1

‘p E¢ll

1
n Z'; 17

o< 1_< <H< H gomz"w‘”(“)ﬂj))n> <16
YEDn j=1
Therefore
1
n % Z.’/l'=1”j 2
(e e-e-vrr) ) )
YEPn j=I

S Ot D
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1

n % Z?:]ﬂj )
2\ MWy(j)\ Tj 1
< 1—<1_[<1—1_[(1—(1—(M‘l;(j))) «w)]))
¢E¢n j:]
1
- 2\ MWe(j)\ Tj nl' Z.',lvzl 7 2
(4v)
+ 1—<1—(1—[<1—H(1—(1—(M§(/))) ) >> )
YEDn j:]
=1. .
We complete the proof. .

ExampLE 2. Let x; = ([0.2,0.5],[0.4,0.6]), xo = ([0.4,0.6],[0.2,0.3]), and x3 =
(0.6, 0.8], 0.1, 0.2]) be three IVPENs, and 7 = (0.2, 0.5, 0.3), W = (0.2, 0.5, 0.3), then
we have

IVPEWMMLT (x1, x2, x3)

1\ 0270.5503

1-0.0361%2 x 0.1888%5 x 0.33089-3
1-0.0361%2 x 0.3308%5 x 0.18889-3
1—0.1888%-2 x 0.0361%-5 x 0.33080%-3
1—0.1888%2 x 0.3308%5 x 0.03619-3
1—0.3308%2 x 0.1888%5 x 0.03619-3
1 —0.33089-2 x 0.0361%-5 x 0.18880-3

(
(
|
(
(

—_—— — — — —

Nr— O ——

1
0.2+0.5+0.3

2=

1 —0.22819-2 x 0.4146%-5 x 0.60139-3
1—0.228192 x 0.6013%-5 x 0.41469-3
1—0.4146%2 x 0.6013%5 x 0.22819-3
1 —0.41469-2 x 0228195 x 0.60139-3
1—0.6013%2 x 0.4146%-5 x 0.22819-3
1 —0.60139-2 x 0.22810-5 x 0.41469-3

(
(
|
(
(

—_—— — — — —

1
120192202 0021005 x 0.0158%3) \ T\ 70
1-0.192292 x 0.0158% x 0.021003) x
1-0.021002 x 0.19229 x 0.0158%-3) x
1 -0.021002 x 0.01580 x 0.19229-3) x ’
1-0.0158%2 x 0.0210% x 0.192203) x

) x

1—0.01580-2 x 0.19220-5 x 0.02100-3

(
(
1—1—2
(
(

1
0.2+0.5+0.3

2=

1 -0.398792 x 0.0556%3 x 0.05520-%) x
1 —0.398792 x 0.0552%-3 x 0.0556%-%) x
1—0.0556%2 x 0.3987% x 0.055203) x
1 - 0.0556%2 x 0.05520 x 0.3987%-3) x
1 - 0.055202 x 0.05560 x 0.3987%-3) x
1—0.055202 x 0.3987% x 0.055673) x

(
(
1-1-%
(
(

= ([0.3683, 0.6229], [0.2773, 0.4252]).
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The IVPFWMM operator has the following property.

Property 4 (Monotonicity). Let p; = ([u5 ,n® 1, [vE vE)) and G; = (uk, uf 1,
L R ) ’ Pj PJ. Z’JZPJ R ’ L qj Rq]2
[Vzi,-’ vqj]) (j=1,2,...,n) betwo sets of IVPFNs, lf(p,ﬁj) + (Mﬁj) < (“zi,-) —|-(qu) ,
and (VE)2 + (8)? > (vE)2 4+ (W), then
pPj pj qj qj

IVPFWMMY (51, pa, ..., pn) <IVPFWMMY) @Gy, o, - Gn).- 39)

Property 5 (Boundedness). Let p; = ([Mlﬁ-’“g]’ [vg_, vg_]), (Gj=12,...,n) be a
J J J J

set of IVPFNs with weights W = (w1, wa, ..., Wa)T, w; € [0,1], Xy =1, if p| =

(Imax;; (i ), max; (g )1, [min; (v ), min; (v3)1), and p~ = ([min; (), min; (15 )1,

[max (vl{;f), max (vgf)]), because of Property 4, then

IVPEWMM, (B . Py + - Py ) < P2TLWMM,(p1, P2, - ... Pn)
< P2TLWMMT, (By, Py - DY) (40)

3.3. IVPFDMM Operator
Qin and Liu (2016) proposed the dual Muirhead mean (DMM) operator.

DeriniTION 9. (See Qin and Liu, 2016.) Letaj (j = 1,2, ..., n) be a set of nonnegative

real numbers, and [7] = (71, 72, ..., ;) € R be a vector of parameters. If
1
1 n n!
[7] _ . .
DMM" (a1, 02, ..., ap) = ST (;n.,a¢(1)> : (41)
where ¢; (j =1,2,...,n) is any a permutation of (1,2,...,n) and ¢, is a set of all
permutations of (1,2, ..., n).

In the following, we proposed the interval valued Pythagorean fuzzy dual MM
(IVPFDMM) operator for IVPFNs.

Derinrrion 10. Let j; = ([uf . wh 1.IvE VR D). (j =1,2,....n) be a set of IVPENs

and there exists parameter vector [7] = (1, 72, ..., T,) € R, then
1 “ "
IVPEDMM™ (51, . -+ fn) = ST ( I1 Zmﬁwn) : (42)
j=17 QEPy j=1

Theorem 4 is derived by operations of the IVPFN.
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Theorem 4. Let p; = ([p, p, 1, [vE v D, (G =1,2,...,n) be a collection of
IVPFNs, then the correspondmg aggregatedl value of IVPFDMM operator is also an

IVPFEN, and

IVPEDMM™ (1, fa. ... pu) = ﬁ( [1 mem)

(43)

1 nl
n -5 .
R 27 nl j=17J
YEPn j=1

Proof.

TiBon = [\/1_(1 “so(;) \/1 “w(ﬂ)z)nj]’
e [uw uw] | o

" -1 (- L) 1= S/Nj]’
> i) = [\/ ":1( i“ o \/n | , ) “3)
i=1 [ IT (v5)™ TT (o)™ }

—_—

=

1

.
Il

j=1
Therefore,
B n 2\ T
I \/1_ [T (1= (rg)") g
PEPn Jj=1
n oNTT ’
: LN Y
~ n J=
[1X7pm=]|F _ , (46)
gedn j=1 \/1— I (1— IT( g(,))2”1>,
YEDn Jj=1
z R \27j
=11 (1= 1_[(‘/’(]))
| PEPn j=1
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n 2\ n!
e ([ By )”
- n: YED j=1
(11X mhn)” = / -

pepn j=1 < 1_[

, (47)

then, we can get

n!

ﬁ(l—[ iﬂj@o(;))

pepn j=1

=(-(n

(- (- frag) )
€Pn Jj=
j . (48)
( | <H <1 I (o )2:1;))'3_’)2;‘”’
\ YEDn Jj=1 v

From the aggregation result above, we prove the result of IVPFDMM aggregation is also
an IVPFN in the following, then

0< |1 (1 - < [l (1 - H (1= (M(’,f(,;))z)n"'))”') o <1, 49)

0< ( =(T1(0-TI1 (véf(.,'))Q”"))"') e (50)
j=1

YEPn
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And, we can prove

YEDn J=
1
n ’:_' Z}}:l”j 2
R 2
(= O-T1ea))) )
YEPy Jj=1
n L
2 j n! nz]ﬂf
< (I0-TTo-er) ) )
YEDn Jj=1
n Lo 1
R 2\ " Zr!=1”j
(- (T (-TTO= o)) )T =0, 61
YEPy Jj=1
So, we proved that the aggregation result of IVPFDMM is also an IVPEN. (|

ExampLE 3. Let x; = ([0.2,0.5],[0.4,0.6]), x» = ([0.4,0.6],[0.2,0.3]), and x3 =
(0.6, 0.8],10.1,0.2]) be three IVPENS, and [ ] = (0.2, 0.5, 0.3), then we have

IVPEDMM™(xy, x3, x3)
B 1
1\ 02705703
(1-0.9602 % 0.840-5 x 0.640-3) x (1 - 0.969-2 x 0.6403 x 0.840-3) \ 31
1— 1 —{ (1-08492x0.96%3 x 0.649-3) x (1 - 0.849-2 x 0.640-3 x 0.960-3) x ,
\ (1 —0.640-2 % 0.840-3 % 0.960-3) x (1 —0.640-2 x 0.967-3 x 0.840-3)
- T
(1-0.7502 % 0.6405 % 0.360-3) x (1 —0.7502 x 0.360-5 x 0.640-3) x S0 TR
I— |1 = (1-06492 507505 % 0.3603) x (1 —0.6402 x 0.3603 % 0.750-3)
\ (1-0.3602 % 0.750-5 x 0.649-3) x (1 - 0.369-2 x 0.640-3 x 0.750-3)
— 1 -
02+05703
1
(1-0.404 % 0.21 % 0.190) x (1 -0.4%4 x 0.1 x 0.20:0)x \ 3
1— | (1-0294 504! x0.106) x (10204 x0.1! x 0.406) ,
\ (1-0.19% x 0.21 % 0.496) » (1 —0.194 x 0.41 x 0.20-6)
1
02405403
1
(1-0.6%4 x 0.3! % 0.200) x (1 -0.604 x 0.2 x0.30:0)x \ 31
1— 1 (1-03%4x06!' x0.200) x (1-0394 x 0.2! x 0.60-0)x
\ (1-0.294 % 0.6! x 0.300) x (1-0.204 x 0.3! x 0.609)

— (10.4403,0.6624], [0.2047, 0.33561).

Property 6 (Idempotency). If p; = p = ([M]L-, Mf], [UJL, vf]), then

IVPEDMM™(Py, P>, ... P,) = p. (52)
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Property 7 (Monotonicity). Let p; = ([M [,L ] [v ]) and qj = ([p, M ]
[ R]) (j=1,2,...,n) betwo sets ofIVPFNs lf([L )2+(p, )2 (pyqj)2+(ydqf)2
and (v PR > (vqj)2+(vqj)2, then '

IVPEDMM™ (51, pa. ..., pn) <IVPEDMMY Gy, o, . .., Gn). (53)

Property 8 (Boundedness). Let

be a set of IVPFNs. If p+ = [max,(ug_),max,(ug_)], [min,(vlg_),min,(vg_)]) and
’ J ; J ’ J ’ J

p~ = ([min; (ng),min, (ugj)], [maxl,'(v]%j),maxj(vgj)]), because of property 7 and

property 8, then

p~ <PFDMM")(p1. pa. ... pn) < pt. (4
3.4. IVPFWDMM Operator

In Section 3.3, it can be seen that the IVPFDMM operator doesn’t consider the importance
of the aggregated arguments. However, in many real practical situations, especially in
multiple attribute decision making, the weights of attributes play an important role in the
process of aggregation. To overcome the limitation of IVPFDMM, we shall develop the
interval valued Pythagorean fuzzy weighted DMM (IVPFWDMM) operator as follows.

DeFiniTION 11. Let pj = ([M%.aﬂg-]’[vg_,vg_]) (j=1,2,3,...,n) be a group of
’ J J J J
IVPENs with weights W = (w1, wa, ow)T, w; €[0,1], w; €0, 1], Z';zl w;j =1and

there exists parameter vector [ ] = (71, 2, ..., T,) € R, then
4
IVPEWDMMU (51, pa, ..., pn) = < I1 Zn, “Z’(‘;‘gm) : (55)
i 9ePn j=1

Theorem 5 can be derived by operations of the IVPFN.

Theorem 5. Let p; = ([p, p, ] [vL H v ]) (j=1,2,3,...,n) be a collection of
]

IVPFNs, then the correspondmg aggregated value of IVPF WDMM operator is also an

IVPFEN, and

1
nl

[] =W j)
IVPEWDMM 7! = <]—[ Z TP )

pEPn j=1
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1

1

n p ST n! Z] 17
C 0 (= o= een)))
n J=
1
n 2% LT n!
e o)
1
n 2\ MWy(j)\ TTj nl
(= (1 (1= fro=0=eg ™))
PEPn J=
1
n 2 nw, ) T nl
(= (- e-o-en™)
Proof.
2 . T
\/1 “w(;) “ﬂwm) ]’:|
2 . T
.pnwW/) _ \/1 'uslzf(J) “'U(p(])) ]
TjPy(j) 2 NWe(j) ’
(\/] (] 50(1) )
2 ”ww(/)
(\/1 (1 w(/) )
R
j:
n 2nwe(iy\ I
ZTE SNMWe(j) \/] jl;ll (] B (M‘l;(j)) W))
) = — T
I (\/ 1= (1=l )
Jj=1 ’
- i
I (/1--wt,)™)
L j=1 :
Thereafter,
n 2 N7
[T 1= 11 (1= (g Oy
l_[ Z ~NMWy(j) PYEP, j=1
T =
pedy j=1 ‘/’(J) 1_[ 1— ﬁ (1 _ ( R )an(p(j))ﬂj
ved i1 Fo)

| .
—_

<

I

-

s
—_~
-

_(1_

(v

L
()

)2)"%0))”1‘ ) ’

N
—
|

.

Il =

(1—(1— (Ug(j))z)"wwm)ﬂj)

.(56)

(57)

(58)
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(59)

1
nl

(M)

‘ﬂ€¢),l/ 1
1
- ¥ ANTTj n!
< ! \/1_ [1(1- (1)) ’) ,
— ‘pe¢’l I:l
- |
n — 4
< y \/1_ TT (1= ()™ ) ’)
YEPy j=I

B <¢’H -1l (1=0- ("5(‘/))2)'%”))”'7’)))3_!,

<n < j=1 | "

- f0-0- (vsf(Ai))z)nwW)nj)) %

Therefore,

| | E ”‘”w«i(/)
TjPy(j)
] ! j ‘pE(pll] 1

i 2nw(jy\ i Y\ Zi=17
(- (- fro-omo))
L\ YEPy j=1 |
i L \2\"We\Ti i e
1_(1_[(1—]'[(1_(1_(%0))) ) >> ,
) - — .(61)
(0 (- fromoea ) )
A\ = j=1 e())
Then, we can obtain
n . % Z?:ll”j
° 1_( <l—[( [T0 =)™ 1)) ) <1, (62)

YEDn j=1
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1
nl

0< ( (T (-TTa-a- 68,07 )— B

QEDy j=1

Because (,ug(j))2 + (v;f(j))2 < 1, therefore,

AT

‘p e(bll

(1= (11 (- oty )) )

YEPn Jj=1

=
S
=
=
o
~
S
g
2
\;;
3
N—
N—
S——"

n 2 n! +ﬂ
+ <1 <H ( = ()™ j)) ) =TS0 (64)
YEPn /=1
So, the aggregation result of IVPFWDMM is also IVPEN. (]

ExampLE 4. Let x; = ([0.2,0.5],[0.4,0.6]), x» = ([0.4,0.6],[0.2,0.3]), and x3 =
([0.6,0.8],10.1,0.2]) be three IVPENs, and [7] = (0.2,0.5,0.3), w = (0.3,0.4,0.3),
then we have

IVPEWDMM!T (x1, x2, x3)

1
(1023497 x 0333005 x 0.631403)x \ 7) 775
(1 —0.2349%2 x 0.6314%5 x 0.3330%) x
Lo | (1-03330%2 % 023499 % 0.6314%)
(1 —0.3330%2 x 0.6314%5 x 0.2349%3) x ’
(1 —0.6314%2 x 0.3330°5 x 0.2349%3) x
\ (1 —0.6314%2 x 0.2349°5 x 0.3330%)
1
(1 0.5359°2 x 0.54170% x 0.81819%) \ T\ 70
(1 —0.5359%2 x 0.8181%3 x 0.5417%3) x
Lo | (1=05417%2 % 0.535992 % 0.8181%7)
(1—0.5417°2 x 0.8181%5 x 0.5359%3) x
(1 —0.8181%2 x 0.5359%5 x 0.5417%3) x
\ (1—0.8181%% x 0.5417%3 x 0.5359%)




176 T. Xiyue et al.

1
10145202 x 0.0478°5 x 0.0090°%) \ T )
1 —0.1452%2 x 0.0090° x 0.0478%3) x
1 —0.0478%2 x 0.1452%5 x 0.0090°%) x
1 —0.0478°2 x 0.0090% x 0.1452%-%) x
1 —0.0090%% x 0.0478% x 0.1452%%) x

)

1 —0.0090%2 x 0.145293 x 0.0478%3

(
(
t
(
(

1
0.2+0.5+0.3

2=

1 —0.3308%2 x 0.1070° x 0.0361%%) x
1 —0.3308%2 x 0.0361% x 0.1070°%) x
1 —0.1070°2 x 0.3308° x 0.0361%%) x
1 —0.1070°2 x 0.0361% x 0.3308"%) x
1 -0.0361%2 x 0.3308% x 0.1070°%) x
\ 1—0.0361%2 x 0.1070° x 0.3308")

= ([0.4453, 0.66606], [0.2039, 0.3347]).

(
(
t
(
(

IVPFWDMM has the following properties.

Property 9 (Monotonicity). Let pj = ([ . g 1, [vf ,vi D and g = (g, ng ), (v, vf D,

(j =1,2,...,n) betwo sets of IVPFNs with weights vector being W = (w1, wa, - - - wy) T, wj €
n
1 (L2 R \2 L2 R\2 L2 R \2 Ly2
[0, 1],]§1 wj =1 (5 )7+ (i )* < (g )* + (ug )™ and (v )* + (7 )™ > (v7 )" +
(B2, then
4qj

IVPEWDMMU™ (51, pa, ..., pn) <IVPEWDMMU (1, G2, . . ., Gn). (65)

Property 10 (Boundedness). Let p; = ([H%., M]l;], [v{%_, vg_]) (j=1,2,...,n) be
? J J J J
a set of IVPFNs. If pt = ([maxj(ugj),maxj(ugj)], [minj(vlgj),minj(ugj)]), P =

([min; (ng), min; (Mg,-)]’ [max (UIL?;')’ maxj(vgj)]), because of property 10, then

IVPFWDMMIT (57, 57, ..., 57) < IVPEWDMMU (51, fo, ..., pn)
< IVPFWDMMI (5, 5%, ... ph).  (66)

4. Models for MADM with IVPFNs

We shall solve the MADM with IVPENs on the basis of IVPFWMM and IVPFWDMM
operators. Let O = {01, O2,..., O,} be a discrete set of alternatives, and C =
{C1, Ca, ..., C,} be aset of attributes, w = (w1, w2, .. ., wy) is the weight of the attribute
G (j=1,2,...,n), where w; € [0, 1], Zj‘:l wj = 1. Suppose that P = (Pij)mxn =
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([sz’“z]] [vj, U])mxn is the IVPF decision matrix, [Mz]’“z]] C [0, 1], [vj, U] C

[0, 1, )+ 0> <1i=12,...m j=1,2,....,n
Then, we can solve the MADM with IVPENs on the basis of IVPFWMM and

IVPFWDMM operators.

Step 1. We use the IVPENs in R, and IVPFWMM operator

_ - i 1 . " ADYEES
= IVPFWMMU (i, i, -, pin) = (; >oT1 (nw¢<j>p¢<ij>)”f) !

’ pePy j=1
1 an
n 2\ MWy j) T n! j:lnl
(1= (1 (1= Fro= e tey™™)))
_ YEn Jj=1
= : ,
1
n nw, Ed FADNNES
( 1—( I1 <1 — l_[ (1 - (1 - (/’L(I;(ij))2) W)) ])) ) ]
\ YEP, Jj=1
_ i Z'*l _
d L \2mweY ) T
1_(1_(1_[(1_.1—[(1_(%(:"/)) ") )) ) ’
YEP, j=1
1 (67)
1 n
n AN\ X7
1— (1 —( 1 (1 -1 (1- (vg(ij))z"w¢<f>) ’)) >,-1
|\ YEPn Jj=1 |

or 1
)

n
~ ~ ~ w,
= IVPFWDMM{Z (i, fia. -, pin) = o (1‘[ Y 7 2(53”)
/1

pepn j=1

: -
LS n;
n 2 NTj n! j=1"J
1-(1-( il (1_ IT (1 = (i)™ ) ,) ) ’
\ YEPn Jj=1 ’
I

)
)

=
Il

1

7] -
;1) j=17]

)
1— ﬁ (1- (Mg(j))znwwﬁ)”-")

=TT (1= (1= (o, )™ )"

j=1

(i ))
(\ 1—< I1 (1 - ﬁ (1-(- (vg(ij))Z)”ww<.f>)ﬂ.f>>»3‘!)';ln,-

to derive the p; (i =1,2,...,m) of O;.
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Table 1
IVPFN decision matrix.

Cl C2 C3 C4

Ol  ([0.40,0.50], ([0.30,0.60], ([0.10,0.30], ([0.50, 0.60],
[0.60,0.80))  [0.40,0.50])  [0.50,0.60])  [0.50, 0.70])
02 ([0.40,0.70],  ([0.60,0.70],  ([0.60,0.70],  ([0.70, 0.80],
[0.20,0.50))  [0.10,0.40])  [0.10,0.20])  [0.50, 0.60])
03 ([0.50,0.70], ([0.20,0.50],  ([0.40,0.50],  ([0.30, 0.60],
[0.10,0.50))  [0.50,0.70])  [0.10,0.30])  [0.10, 0.20])
04  ([0.40,0.80], ([0.10,0.60], ([0.10,0.40],  ([0.40, 0.60],
[0.10,0.20))  [0.20,0.30])  [0.30,0.50])  [0.20, 0.60])
05  ([0.40,0.60], ([0.10,0.40]  ([0.40,0.70],  ([0.40, 0.60],
[0.20,0.40))  [0.50,0.70])  [0.30,0.50])  [0.50, 0.80])

Step 2. Calculate the S(p;) and H(p;) of the overall IVPFNs p; to rank all the alterna-
tives O;.

Step 3. Rank and select the best A; (i =1, 2, ..., m) in accordance with S(p;) and H (p;)
(i=1,2,...,m).

Step 4. End.

5. Numerical Example and Comparative Analysis
5.1. Numerical Example

Supplier is the "Source" of the whole supply chain, and the green supplier selection is
the foundation of GSCM. The quality of suppliers will directly affect the environmen-
tal performance of enterprises. First, the green supply chain management and the tradi-
tional supply chain management were compared, then the characteristics of green sup-
plier partnerships were analysed by various aspects. The problems of selecting green
suppliers in GSCM are classical MADM problems (Lang et al., 2015; Wu et al., 2018;
Wei et al., 2018c; Wang et al., 2018c; Wei, 2018a; Yue and Jia, 2013; Wang et al., 2018d;
Wei and Wei, 2018b; Chen and Wei, 2010; Merigé and Gil-Lafuente, 2013; Wei et al.,
2018d; Wei and Gao, 2018).Then, we shall give an application for selecting green suppli-
ers in GSCM with IVPFNs. There are five potential green suppliers O; (i =1,2,3,4,5)
to be evaluated by four attributes: (1) Cy is the price factor; (2) C; is the delivery fac-
tor; (3) C3 is the environmental factor; (4) Cy is the product quality factor. Five potential
green suppliers are to be evaluated by IVPENs under four attributes (whose weight values
W =(0.2,0.1,0.3,0.4), = (0.2,0.2,0.3,0.3), as shown in Table 1.

Then, in order to find the best green suppliers in GSCM, we utilize the IVPFMM,
IVPFWMM, IVPFDMM and IVPFWDMM operators to solve the MADM problem with
IVPENSs, which concludes the following calculating steps:
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Table 2
The aggregating result of IVPFMM, IVPFWMM, IVPFDMM and IVPFWDMM operators.

0Ol 02 03 04 05

IVPFMM ([0.2799, 0.4827], ([0.5639, 0.7238], ([0.3316, 0.5695], ([0.2013, 0.5833], ([0.2843, 0.5639],
[0.5082, 0.6742]) [0.2872, 0.4590]) [0.2742, 0.4882]) [0.2129, 0.4411]) [0.4029, 0.6448])
IVPFWMM ([0.2622, 0.4556], ([0.5266, 0.6773], ([0.3125, 0.5362], ([0.1893, 0.5542], ([0.2672, 0.5262],
[0.5680, 0.7080]) [0.2972, 0.5247]) [0.4412, 0.6065]) [0.3110, 0.4671]) [0.4890, 0.6842])
IVPFDMM  ([0.3627, 0.5220], ([0.5936, 0.7297], ([0.3719, 0.5874], ([0.2960, 0.6370], ([0.3529, 0.5936],
[0.4951, 0.6407]) [0.1789, 0.3947]) [0.1505, 0.3820]) [0.1865, 0.3673]) [0.3508, 0.5794])
IVPFWDMM ([0.4394, 0.5960], ([0.6367, 0.7600], ([0.4396, 0.6400], ([0.3400, 0.6929], ([0.3750, 0.6280],
[0.4657, 0.6007]) [0.1674, 0.3695]) [0.1426, 0.3673]) [0.1756, 0.3416]) [0.3301, 0.5410])

Table 3
The rank and score of green suppliers by using IVPFMM, IVPFWMM, IVPFDMM and IVPFWDMM
operators.
(0] 02 03 04 05 Order
IVPFMM 03996 0.6372  0.5302 0.5352 0.4552 02>04>03>05>01

IVPFWMM 0.3631  0.5931 0.4557  0.507 0.4102  02>04>03>05>01
IVPFDMM 0.4371  0.6743  0.5787 0.5809 0.5046 02>04>03>05>01
IVPFWDMM  0.4926 0.7046 0.6119  0.612 0.5333  02>04>03>05>01

Step 1. According to Table 1, aggregate all IVPFNs p;; (j =1,2,...,n) by using the
IVPFMM, IVPFWMM, IVPFDMM and IVPFWDMM operators to derive the overall
IVPENs p; (i =1, 2, 3,4) of the alternative O;. The results are listed in Table 2.

Step 2. According to Table 2, the score functions of the green suppliers are listed in Ta-
ble 3. According to the result of green suppliers order, we can know that the best choice is
supplier 4, we get the same result by different aggregation, which proved the effectiveness
of result.

5.2. Influence Analysis

The aggregation method of extended IVPFS with MM has two advantages, one is that
it can reduce the bad effects of the unduly high and low assessments on the final result,
the other is that it can capture the interrelationship between IVPFNs. These aggregation
operators have a parameter vector, which makes extended operator more flexible, so the
different vector leads to different aggregation results, different scores and ranking results.
In order to illustrate the influence of the parameter vector on the ranking result, we discuss
the influence with several parameter vectors, the result you can find in Table 4.

We can see that the different parameters lead to different result and different ranking
order. The more attributes we consider, the bigger the scores; the bigger the attribute value,
the lower the scores. Therefore, the parameter vector can be considered as decision maker’s
risk preference.
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Table 4
Ranking results by utilizing different parameter vector R in the IVPFWMM operator.
(1, o, M3, 74) Scores Order
0y 0, 03 Oy4 Os
(1,0,0,0) 0.4295 0.6829 0.5952 0.5661  0.512 0,2>04>03>05>0
(2,0,0,0) 0.4578 0.7032  0.608 0.5837 0.5324  02>04>03>05>0
(3,0,0,0) 0.4817  0.721 0.6172  0.5966  0.5468  02>04>03>05>0
(1,1,0,0) 0.393 0.6246  0.5469  0.5391 0.4764 02>04>03>05>0
(1,1,1,0) 0.3748  0.6051 0.5041 05194 0.4475  072>04>03>05>0
(1,1,1,1) 0.3624  0.5923 0.4534 0.5062 0.4084 02>04>03>05>01
Table 5
Ranking results by utilizing different parameter vector R in the [VPFWDMM operator.
(1, o, M3, 74) Scores Order
0 0 03 on Os

(1,0,0,0) 03909 0.6347 0.5647 05185 0.4677 02>03>04>05>0
(2,0,0,0) 0.3744  0.5975  0.5519  0.4927 0.4405 072>03>04>05>0
(3,0,0,0) 0.362 0.5708  0.5412  0.4745 04172  072>03>04>05>0
(1,1,0,0) 0.4442  0.6742 05931 0.5678 05113  072>03>04>05>0
(1,1,1,0) 0.4691  0.6921  0.6054 0.5979 0.5242  072>03>04>05>0
(1,1,1,1) 0.494 0.7054  0.6124  0.613 0.5339  02>04>03>05>01

5.3. Comparative Analysis

Then, we compare the proposed method with the IVPFWA and IVPFWG operator (Garg,
2016b).

DEeriNtTION 12. (See Garg, 2016b.) Suppose that R = (7} )mxn = ([M,-Lj, “5]’ [‘)16’ V,'l;])mxn
be a IVPFN matrix, W = (wy, w2,...,w,) be the weight of w;, 0 < w; < 1,
> i—iwj=1.Then

ri = IVPFWAy, (7i1, Fi2, - - - s Fin)
n
= @(wjfij)
j=l1
n n wi
J

=TTa=-ws)™ =TT - @)™ |-

Jj=1 Jj=1

n n

[TEH™. TTCH™ ). i=12.....m, (69)

= j=1
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Table 6
The results of green suppliers by IVPFWA (IVPFWG) operators.

IVPFWA IVPFWG

01  ([0.3872,0.5156],[0.5071,0.6637])  ([0.2804,0.4699],[0.5149,0.6861])
0,  ([0.6188,0.7459],[0.2187,0.3995])  ([0.5885,0.7384],[0.3457,0.4831])
O3 ([0.3751,0.5902],[0.1175,0.3075])  ([0.3478,0.5753],[0.1926,0.3949])
O4  ([0.3208,0.6173],[0.1966,0.4255])  ([0.2297,0.5627],[0.2224,0.496])

Os5  ([0.3822,0.621],[0.3571,0.5968]) ([0.3482,0.6034],[0.4062,0.6705])

Table 7
The score functions of the green suppliers.
IVPFWA IVPFWG

01 0.4295 0.3909

o)) 0.6829 0.6347

03 0.5952 0.5647

O4 0.5661 0.5185

Os 0.512 0.4677
Table 8

Order of the green suppliers.

Order

IVPEWA 0y > O3> O4 > Os > Oy
IVPFWG 0> 03> 04 > O5 > 0

n
Fi = IVPFWGw (Fi1, Fia, ..., Fin) = Q) (ij)"

Jj=1
1 L\W; " R\Wj " L\2 wj
= l_[(“ij) ]’l_[(“ij) it 1_1_[(1_(Vij)) )
=1 j=1 j=1
n X
=TT=E)" ), i=t2...m (70)

j=1

By utilizing the IVPFWA and IVPFWG operators, the results are derived in Table 6.

According to Table 6, the score values are listed in Table 7.

From the Table 7, the order is in Table 8.

From above, we get the same best green suppliers to show the effectiveness of our
proposed operators. However, the IVPFWA and IVPFWG operators don’t consider re-
lationship among aggregated arguments, and thus can’t eliminate the influence of unfair
arguments. The IVPFWMM and IVPFWDMM operators consider the relationship among
aggregated arguments.
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6. Conclusion

Aggregation operators have become a hot issue and an important tool in the decision
making fields in recent years. However, they still have some limitations in practical
applications. For example, some aggregation operators suppose the attributes are in-
dependent of each other. However, the MM operator and the dual MM operator have
a prominent characteristic that it can consider the interaction relationships among any
number of attributes by a parameter vector. Motivated by the studies about the MM
operator and the dual MM operator, in this paper, we proposed some new MM and
DMM operators to cope with MADM with IVPENs, including the IVPFMM operator,
IVPFWMM operator, the IVPFDMM operator, and the IVPFWDMM operator. Then,
the desirable properties were proved. Moreover, these proposed operators are used to
deal with the MADM problems with IVPFNs. Finally, we used an illustrative exam-
ple for green supplier selections in GSCM to prove the feasibility and validity of the
proposed operators by comparing with the other existing methods. In subsequent stud-
ies, we shall extend the proposed operators to the different fields (De and Sana, 2014;
Gao et al., 2018a; Wei et al., 2018b, 2018e; Chen, 2015; Wei et al., 2018f; Wei, 2018b;
Deli and Cagman, 2015; Wei et al., 2017b; Wei and Wang, 2017) as well as to propose
some new aggregation operators under the uncertain environment (Wang et al., 2013;
Wei et al., 2017¢; Wei, 2018c; Chaira, 2014; Singh, 2014; Wei, 2017c; Son, 2015).
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