1 Introduction
2 Related Literature
2.1 Green Supplier Selection Methods
2.2 Interval 2-Tuple Linguistic Aggregation Operators
3 Preliminaries
3.1 2-Tuple Linguistic Variables
Definition 1.
Definition 2.
3.2 Interval 2-Tuple Linguistic Variables
Definition 3.
(6)
\[ \Delta [{\beta _{1}},{\beta _{2}}]=\big[({s_{i}},{\alpha _{i}}),({s_{j}},{\alpha _{j}})\big]\hspace{1em}\text{with}\hspace{2.5pt}\left\{\begin{array}{l@{\hskip4.0pt}l}{s_{i}},\hspace{1em}& i=\text{round}({\beta _{1}}\cdot g),\\ {} {s_{j}},\hspace{1em}& j=\text{round}\hspace{2.5pt}({\beta _{2}}\cdot g),\\ {} {\alpha _{i}}={\beta _{1}}-\frac{i}{g},\hspace{1em}& {\alpha _{i}}\in \big[-\frac{1}{2g},\frac{1}{2g}\big),\\ {} {\alpha _{j}}={\beta _{2}}-\frac{j}{g},\hspace{1em}& {\alpha _{j}}\in \big[-\frac{1}{2g},\frac{1}{2g}\big).\end{array}\right.\](7)
\[ {\Delta ^{-1}}\big[({s_{i}},{\alpha _{i}}),({s_{j}},{\alpha _{j}})\big]=\bigg[\frac{i}{g}+{\alpha _{i}},\frac{j}{g}+{\alpha _{j}}\bigg]=[{\beta _{1}},{\beta _{2}}].\]Definition 4.
(8)
\[ p({\tilde{a}_{1}}\geqslant {\tilde{a}_{2}})=\max \bigg\{1-\max \bigg(\frac{{\delta _{2}}-{\beta _{1}}}{h({\tilde{a}_{1}})+h({\tilde{a}_{2}})},0\bigg),0\bigg\}.\]-
(1) $0\leqslant p({\tilde{a}_{1}}\geqslant {\tilde{a}_{2}})\leqslant 1$, $0\leqslant p({\tilde{a}_{2}}\geqslant {\tilde{a}_{1}})\leqslant 1$;
-
(2) $p({\tilde{a}_{1}}\geqslant {\tilde{a}_{2}})+p({\tilde{a}_{2}}\geqslant {\tilde{a}_{1}})=1$. Especially, $p({\tilde{a}_{1}}\geqslant {\tilde{a}_{1}})=p({\tilde{a}_{2}}\geqslant {\tilde{a}_{2}})=0.5$.
4 Interval 2-Tuple Linguistic Hybrid Aggregation Operators
4.1 Interval 2-Tuple Hybrid Averaging Operators
Definition 5.
(10)
\[\begin{array}{l}\displaystyle {\text{ITWA}_{w}}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{i=1}{\overset{n}{\bigoplus }}}({w_{i}}{\tilde{a}_{i}})\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\sum \limits_{i=1}^{n}}{w_{i}}{\Delta ^{-1}}({s_{i}},{\alpha _{i}}),{\sum \limits_{i=1}^{n}}{w_{i}}{\Delta ^{-1}}({t_{i}},{\varepsilon _{i}})\Bigg].\end{array}\]Definition 6.
(11)
\[\begin{array}{l}\displaystyle {\text{ITOWA}_{\omega }}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{j=1}{\overset{n}{\bigoplus }}}({\omega _{j}}{\tilde{a}_{\sigma (j)}})\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\sum \limits_{j=1}^{n}}{\omega _{j}}{\Delta ^{-1}}({s_{\sigma (j)}},{\alpha _{\sigma (j)}}),{\sum \limits_{j=1}^{n}}{\omega _{j}}{\Delta ^{-1}}({t_{\sigma (j)}},{\varepsilon _{\sigma (j)}})\Bigg],\end{array}\]Definition 7.
(12)
\[\begin{array}{l}\displaystyle {\text{ITHA}_{\omega ,w}}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{j=1}{\overset{n}{\bigoplus }}}({\omega _{j}}{\dot{\tilde{a}}_{\sigma (j)}})\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\sum \limits_{j=1}^{n}}{\omega _{j}}{\Delta ^{-1}}({\dot{s}_{\sigma (j)}},{\dot{\alpha }_{\sigma (j)}}),{\sum \limits_{j=1}^{n}}{\omega _{j}}{\Delta ^{-1}}({\dot{t}_{\sigma (j)}},{\dot{\varepsilon }_{\sigma (j)}})\Bigg].\end{array}\]Example 1.
Definition 8.
(13)
\[\begin{array}{l}\displaystyle {\text{ITOWAWA}_{\omega ,w}}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{j=1}{\overset{n}{\bigoplus }}}({v_{j}}{\tilde{a}_{\sigma (j)}})\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\sum \limits_{j=1}^{n}}{v_{j}}{\Delta ^{-1}}({s_{\sigma (j)}},{\alpha _{\sigma (j)}}),{\sum \limits_{j=1}^{n}}{v_{j}}{\Delta ^{-1}}({t_{\sigma (j)}},{\varepsilon _{\sigma (j)}})\Bigg],\end{array}\]Definition 9.
(14)
\[ {\text{ITOWAWA}_{\omega ,w}}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})=\phi {\underset{j=1}{\overset{n}{\bigoplus }}}({\omega _{j}}{\tilde{a}_{\sigma (j)}})\oplus (1-\phi ){\underset{i=1}{\overset{n}{\bigoplus }}}({w_{i}}{\tilde{a}_{i}}),\]Example 2.
4.2 Interval 2-Tuple Hybrid Geometric Operators
Definition 10.
(15)
\[\begin{array}{l}\displaystyle {\text{ITWG}_{w}}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{i=1}{\overset{n}{\bigotimes }}}{({\tilde{a}_{i}})^{{w_{i}}}}\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\prod \limits_{i=1}^{n}}{\big({\Delta ^{-1}}({s_{i}},{\alpha _{i}})\big)^{{w_{i}}}},{\prod \limits_{i=1}^{n}}{\big({\Delta ^{-1}}({t_{i}},{\varepsilon _{i}})\big)^{{w_{i}}}}\Bigg].\end{array}\]Definition 11.
(16)
\[\begin{array}{l}\displaystyle {\text{ITOWG}_{\omega }}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{i=1}{\overset{n}{\bigotimes }}}{({\tilde{a}_{\sigma (j)}})^{{\omega _{j}}}}\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\prod \limits_{j=1}^{n}}{\big({\Delta ^{-1}}({s_{\sigma (j)}},{\alpha _{\sigma (j)}})\big)^{{\omega _{j}}}},{\prod \limits_{j=1}^{n}}{\big({\Delta ^{-1}}({t_{\sigma (j)}},{\varepsilon _{\sigma (j)}})\big)^{{\omega _{j}}}}\Bigg],\end{array}\]Definition 12.
(17)
\[\begin{array}{l}\displaystyle {\text{ITHG}_{\omega ,w}}({\tilde{a}_{1}},{\tilde{a}_{2}},\dots ,{\tilde{a}_{n}})={\underset{j=1}{\overset{n}{\bigotimes }}}{({\dot{\tilde{a}}_{\sigma (j)}})^{{\omega _{j}}}}\\ {} \displaystyle \hspace{1em}=\Delta \Bigg[{\prod \limits_{j=1}^{n}}{\big({\Delta ^{-1}}({\dot{s}_{\sigma (j)}},{\dot{\alpha }_{\sigma (j)}})\big)^{{\omega _{j}}}},{\prod \limits_{j=1}^{n}}{\big({\Delta ^{-1}}({\dot{t}_{\sigma (j)}},{\dot{\varepsilon }_{\sigma (j)}})\big)^{{\omega _{j}}}}\Bigg],\end{array}\]Example 3.
5 The Proposed Green Supplier Selection Approach
-
1. A certain rating such as Poor can be denoted as $[({s_{1}},0),({s_{1}},0)]$.
-
2. An interval grade, e.g. Poor-Medium, can be expressed as $[({s_{1}},0),({s_{2}},0)]$. This means that the rating of an alternative concerning the criterion under consideration is between Poor and Medium.
-
3. If a decision maker is not willing to or cannot provide a judgement for an alternative concerning the criterion under consideration, then the assessment could be anywhere between Very poor and Very good and thus can be written as $[({s_{0}},0),({s_{4}},0)]$.
(18)
\[\begin{array}{l}\displaystyle {\tilde{r}_{i}^{k}}=\big[\big({s_{i}^{k}},{\alpha _{i}^{k}}\big),\big({t_{i}^{k}},{\varepsilon _{i}^{k}}\big)\big]={\text{ITWA}_{w}}\big({\tilde{r}_{i1}^{k}},{\tilde{r}_{i2}^{k}},\dots ,{\tilde{r}_{in}^{k}}\big),\\ {} \displaystyle \hspace{1em}i=1,2,\dots ,m,\hspace{2.5pt}k=1,2,\dots ,l.\end{array}\](19)
\[ {\tilde{r}_{i}}=\big[({s_{i}},{\alpha _{i}}),({t_{i}},{\varepsilon _{i}})\big]={\text{ITHA}_{\omega ,\lambda }}\big({\tilde{r}_{i}^{1}},{\tilde{r}_{i}^{2}},\dots ,{\tilde{r}_{i}^{l}}\big),\hspace{1em}i=1,2,\dots ,m,\](20)
\[ {\tilde{r}_{i}}=\big[({s_{i}},{\alpha _{i}}),({t_{i}},{\varepsilon _{i}})\big]={\text{ITOWAWA}_{\omega ,\lambda }}\big({\tilde{r}_{i}^{1}},{\tilde{r}_{i}^{2}},\dots ,{\tilde{r}_{i}^{l}}\big),\hspace{1em}i=1,2,\dots ,m,\](21)
\[ {\tilde{r}_{i}}=\big[({s_{i}},{\alpha _{i}}),({t_{i}},{\varepsilon _{i}})\big]={\text{ITHG}_{\omega ,\lambda }}\big({\tilde{r}_{i}^{1}},{\tilde{r}_{i}^{2}},\dots ,{\tilde{r}_{i}^{l}}\big),\hspace{1em}i=1,2,\dots ,m,\]6 Illustrative Example
6.1 Application of the Proposed Approach
Table 1
Decision makers | Alternatives | Criteria | |||
C1 | C2 | C3 | C4 | ||
DM1 | A1 | G | G | G | M-G |
A2 | G | M | M-G | G | |
A3 | M-G | G | M-G | ||
A4 | G | G | M-G | VG | |
A5 | G-VG | VG | G | G | |
DM2 | A1 | VG | M | MG | MG-G |
A2 | G | M-MG | MG | M | |
A3 | G | MG-G | G | ||
A4 | MG | MG | G | G | |
A5 | G-VG | G | G | VG | |
DM3 | A1 | VG | MG | MG-VG | G |
A2 | G | M | MG | M-MG | |
A3 | M-G | G | G | MG | |
A4 | M | M | G | ||
A5 | G-EG | G | G-VG | G | |
DM4 | A1 | G | M | G-VG | G |
A2 | M-G | M-G | G | M | |
A3 | G | VG | G-VG | G | |
A4 | G | G | G | ||
A5 | G-VG | VG | VG | G |
Table 2
Decision makers | Candidates | Criteria | |||
C1 | C2 | C3 | C4 | ||
DM1 | A1 | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{2}},0),({a_{3}},0)]$ |
A2 | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{2}},0),({a_{2}},0)]$ | $[({a_{2}},0),({a_{3}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | |
A3 | $[({a_{2}},0),({a_{3}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{0}},0),({a_{4}},0)]$ | $[({a_{2}},0),({a_{3}},0)]$ | |
A4 | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{2}},0),({a_{3}},0)]$ | $[({a_{4}},0),({a_{4}},0)]$ | |
A5 | $[({a_{3}},0),({a_{4}},0)]$ | $[({a_{4}},0),({a_{4}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | $[({a_{3}},0),({a_{3}},0)]$ | |
DM2 | A1 | $[({b_{6}},0),({b_{6}},0)]$ | $[({b_{3}},0),({b_{3}},0)]$ | $[({b_{4}},0),({b_{4}},0)]$ | $[({b_{4}},0),({b_{5}},0)]$ |
A2 | $[({b_{5}},0),({b_{5}},0)]$ | $[({b_{3}},0),({b_{4}},0)]$ | $[({b_{4}},0),({b_{4}},0)]$ | $[({b_{3}},0),({b_{3}},0)]$ | |
A3 | $[({b_{0}},0),({b_{6}},0)]$ | $[({b_{5}},0),({b_{5}},0)]$ | $[({b_{4}},0),({b_{5}},0)]$ | $[({b_{5}},0),({b_{5}},0)]$ | |
A4 | $[({b_{4}},0),({b_{4}},0)]$ | $[({b_{4}},0),({b_{4}},0)]$ | $[({b_{5}},0),({b_{5}},0)]$ | $[({b_{5}},0),({b_{5}},0)]$ | |
A5 | $[({b_{5}},0),({b_{6}},0)]$ | $[({b_{5}},0),({b_{5}},0)]$ | $[({b_{5}},0),({b_{5}},0)]$ | $[({b_{6}},0),({b_{6}},0)]$ | |
DM3 | A1 | $[({c_{7}},0),({c_{7}},0)]$ | $[({c_{5}},0),({c_{5}},0)]$ | $[({c_{5}},0),({c_{7}},0)]$ | $[({c_{6}},0),({c_{6}},0)]$ |
A2 | $[({c_{6}},0),({c_{6}},0)]$ | $[({c_{4}},0),({c_{4}},0)]$ | $[({c_{5}},0),({c_{5}},0)]$ | $[({c_{4}},0),({c_{5}},0)]$ | |
A3 | $[({c_{4}},0),({c_{6}},0)]$ | $[({c_{6}},0),({c_{6}},0)]$ | $[({c_{6}},0),({c_{6}},0)]$ | $[({c_{5}},0),({c_{5}},0)]$ | |
A4 | $[({c_{4}},0),({c_{4}},0)]$ | $[({c_{0}},0),({c_{8}},0)]$ | $[({c_{4}},0),({c_{4}},0)]$ | $[({c_{6}},0),({c_{6}},0)]$ | |
A5 | $[({c_{6}},0),({c_{8}},0)]$ | $[({c_{6}},0),({c_{6}},0)]$ | $[({c_{6}},0),({c_{7}},0)]$ | $[({c_{6}},0),({c_{6}},0)]$ | |
DM4 | A1 | $[({d_{3}},0),({d_{3}},0)]$ | $[({d_{2}},0),({d_{2}},0)]$ | $[({d_{3}},0),({d_{4}},0)]$ | $[({d_{3}},0),({d_{3}},0)]$ |
A2 | $[({d_{2}},0),({d_{3}},0)]$ | $[({d_{2}},0),({d_{3}},0)]$ | $[({d_{3}},0),({d_{3}},0)]$ | $[({d_{2}},0),({d_{2}},0)]$ | |
A3 | $[({d_{3}},0),({d_{3}},0)]$ | $[({d_{4}},0),({d_{4}},0)]$ | $[({d_{3}},0),({d_{4}},0)]$ | $[({d_{3}},0),({d_{3}},0)]$ | |
A4 | $[({d_{3}},0),({d_{3}},0)]$ | $[({d_{3}},0),({d_{3}},0)]$ | $[({d_{3}},0),({d_{3}},0)]$ | $[({d_{0}},0),({d_{4}},0)]$ | |
A5 | $[({d_{3}},0),({d_{4}},0)]$ | $[({d_{4}},0),({d_{4}},0)]$ | $[({d_{4}},0),({d_{4}},0)]$ | $[({d_{3}},0),({d_{3}},0)]$ |
Table 3
Alternatives | Decision makers | |||
DM1 | DM2 | DM3 | DM4 | |
A1 | $\Delta [0.7025,0.7500]$ | $\Delta [0.6983,0.7300]$ | $\Delta [0.7063,0.7838]$ | $\Delta [0.6825,0.7600]$ |
A2 | $\Delta [0.6050,0.6825]$ | $\Delta [0.6283,0.6733]$ | $\Delta [0.5963,0.6200]$ | $\Delta [0.5775,0.7025]$ |
A3 | $\Delta [0.4125,0.8275]$ | $\Delta [0.5900,0.8717]$ | $\Delta [0.6688,0.7263]$ | $\Delta [0.8175,0.8950]$ |
A4 | $\Delta [0.7200,0.7975]$ | $\Delta [0.7500,0.7500]$ | $\Delta [0.4125,0.6825]$ | $\Delta [0.6075,0.7975]$ |
A5 | $\Delta [0.8175,0.8750]$ | $\Delta [0.8650,0.9033]$ | $\Delta [0.7500,0.8463]$ | $\Delta [0.8950,0.9525]$ |
Table 4
Alternatives | |||||
A1 | A2 | A3 | A4 | A5 | |
By ITHA | $\Delta [0.4864,0.5297]$ | $\Delta [0.4190,0.4589]$ | $\Delta [0.4569,0.5664]$ | $\Delta [0.4022,0.5138]$ | $\Delta [0.5713,0.6187]$ |
By ITOWAWA | $\Delta [0.5901,0.6429]$ | $\Delta [0.5069,0.5705]$ | $\Delta [0.5509,0.6999]$ | $\Delta [0.5210,0.6424]$ | $\Delta [0.7078,0.7603]$ |
By ITHG | $\Delta [0.7788,0.8262]$ | $\Delta [0.7017,0.7473]$ | $\Delta [0.7328,0.8931]$ | $\Delta [0.6976,0.8222]$ | $\Delta [0.8897,0.9356]$ |
Table 5
${\tilde{r}_{1}}$ | ${\tilde{r}_{2}}$ | ${\tilde{r}_{3}}$ | ${\tilde{r}_{4}}$ | ${\tilde{r}_{5}}$ | Ranking | |
ITHA | 2.799 | 0.888 | 2.753 | 1.560 | 4.500 | ${\tilde{r}_{5}}\succ {\tilde{r}_{1}}\succ {\tilde{r}_{3}}\succ {\tilde{r}_{4}}\succ {\tilde{r}_{2}}$ |
ITOWAWA | 2.656 | 0.860 | 2.613 | 1.871 | 4.500 | ${\tilde{r}_{5}}\succ {\tilde{r}_{1}}\succ {\tilde{r}_{3}}\succ {\tilde{r}_{4}}\succ {\tilde{r}_{2}}$ |
ITHG | 2.697 | 0.863 | 2.682 | 1.774 | 4.484 | ${\tilde{r}_{5}}\succ {\tilde{r}_{1}}\succ {\tilde{r}_{3}}\succ {\tilde{r}_{4}}\succ {\tilde{r}_{2}}$ |
Table 6
Alternatives | |||||
A1 | A2 | A3 | A4 | A5 | |
ITHA | 2 | 5 | 3 | 4 | 1 |
ITOWAWA | 2 | 5 | 3 | 4 | 1 |
ITHG | 2 | 5 | 3 | 4 | 1 |
6.2 Comparative Analysis
Table 7
Alternatives | Fuzzy TOPSIS | COPRAS-G | ITL-VIKOR | The proposed method | |||
$C{C_{i}}$ | Ranking | $R{S_{i}}$ | Ranking | ${Q_{i}}$ | Ranking | ||
A1 | 0.493 | 2 | 0.201 | 2 | 0.713 | 3 | 2 |
A2 | 0.123 | 5 | 0.181 | 5 | 0.988 | 5 | 5 |
A3 | 0.475 | 3 | 0.200 | 3 | 0.512 | 2 | 3 |
A4 | 0.310 | 4 | 0.190 | 4 | 0.909 | 4 | 4 |
A5 | 1.000 | 1 | 0.229 | 1 | 0.000 | 1 | 1 |