Pub. online:4 Aug 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 759–794
Abstract
From the perspective of multiple attribute decision analysis, the evaluation of decision alternatives should be based on the performance scores determined with respect to more than one attribute. Fuzzy logic concepts can equip the evaluation process with different scales of linguistic terms to let the decision-makers point out their ideas and preferences. A more recent one of fuzzy sets is the picture fuzzy set which covers three separately allocable elements: positive, neutral, and negative membership degrees. The novel and distinctive element included by a picture fuzzy set is the refusal degree which is equal to the difference between 1 and the sum of the other three. In this study, we aim to contribute to the literature of the picture fuzzy sets by (i) proposing two novel entropy measures that can be used in objective attribute weighting and (ii) developing a novel picture fuzzy version of CODAS (COmbinative Distance-based ASsessment) method which is empowered with entropy-based attribute weighting. The applicability of the method is shown in a green supplier selection problem. To clarify the differences of the proposed method, a comparative analysis is provided by considering traditional CODAS, spherical fuzzy CODAS, and spherical fuzzy TOPSIS with different entropy-based scenarios.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 4 (2018), pp. 773–800
Abstract
Green supplier selection has recently become one of the key strategic considerations in green supply chain management, due to regulatory requirements and market trends. It can be regarded as a multi-criteria group decision-making (MCGDM) problem, in which a set of alternatives are evaluated with respect to multiple criteria. MCGDM methods based on Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are widely used in solving green supplier selection problems. However, the classic AHP must conduct large amounts of pairwise comparisons to derive a consistent result due to its complex structure. Meanwhile, the classic TOPSIS only considers one single negative idea solution in selecting suppliers, which is insufficiently cautious. In this study, an improved TOPSIS integrated with Best-Worst Method (BWM) is developed to solve MCGDM problems with intuitionistic fuzzy information in the context of green supplier selection. The BWM is investigated to derive criterion weights, and the improved TOPSIS method is proposed to obtain decision makers’ weights in terms of different criteria. Moreover, the developed TOPSIS-based coefficient is used to rank alternatives. Finally, a green supplier selection problem in the agri-food industry is presented to validate the proposed approach followed by sensitivity and comparative analyses.
Journal:Informatica
Volume 27, Issue 4 (2016), pp. 767–798
Abstract
The 2-tuple linguistic computational model is an important tool to deal with linguistic information. To extend the application of hesitant fuzzy linguistic term sets and avoid information loss, this paper introduces hesitant fuzzy 2-tuple linguistic term sets that are expressed by using several symbolic numbers in . Considering the order relationship between hesitant fuzzy 2-tuple linguistic term sets, measures of expected value and variance are defined. Meanwhile, several induced generalized hesitant fuzzy 2-tuple linguistic aggregation operators are defined, by which the comprehensive attribute values of alternatives can be obtained. Then, models for the optimal weight vector on a decision maker set, on an attribute set and on their ordered sets are constructed, respectively. Furthermore, an approach to multi-granularity group decision making with hesitant fuzzy linguistic information is developed. Finally, an example is selected to illustrate the feasibility and practicality of the proposed procedure.
Journal:Informatica
Volume 25, Issue 2 (2014), pp. 327–360
Abstract
We present a new aggregation operator called the generalized ordered weighted proportional averaging (GOWPA) operator based on an optimal model with penalty function, which extends the ordered weighted geometric averaging (OWGA) operator. We investigate some properties and different families of the GOWPA operator. We also generalize the GOWPA operator. The key advantage of the GOWPA operator is that it is an aggregation operator with theoretic basis on aggregation, which focuses on its structure and importance of arguments. Moreover, we propose an orness measure of the GOWPA operator and indicate some properties of this orness measure. Furthermore, we introduce the generalized least squares method (GLSM) to determine the GOWPA operator weights based on its orness measure. Finally, we present a numerical example to illustrate the new approach in an investment selection decision making problem.
Journal:Informatica
Volume 23, Issue 4 (2012), pp. 621–643
Abstract
Nowadays most required products and services of companies are provided through other organisations. Outsourcing as a new approach has a significant role in management literature. Supplier should be selected by executives, when the organization decides to acquire a product or service from other organizations. Concerning supplier selection, the managers should consider more than one factor or criterion, which may be inconsistent and contradictory. Therefore, supplier selection is a multi-criteria decision-making issue. Analytic network process (ANP) is a technique to solve multi-criteria decision-making problems in which the criteria affect each other and have nonlinear correlation. In this study, the goal is to use ANP to select the supplier in a group decision-making.