Pub. online:19 May 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 2 (2020), pp. 205–224
Abstract
We consider a geographical region with spatially separated customers, whose demand is currently served by some pre-existing facilities owned by different firms. An entering firm wants to compete for this market locating some new facilities. Trying to guarantee a future satisfactory captured demand for each new facility, the firm imposes a constraint over its possible locations (a finite set of candidates): a new facility will be opened only if a minimal market share is captured in the short-term. To check that, it is necessary to know the exact captured demand by each new facility. It is supposed that customers follow the partially binary choice rule to satisfy its demand. If there are several new facilities with maximal attraction for a customer, we consider that the proportion of demand captured by the entering firm will be equally distributed among such facilities (equity-based rule). This ties breaking rule involves that we will deal with a nonlinear constrained discrete competitive facility location problem. Moreover, minimal attraction conditions for customers and distances approximated by intervals have been incorporated to deal with a more realistic model. To solve this nonlinear model, we first linearize the model, which allows to solve small size problems because of its complexity, and then, for bigger size problems, a heuristic algorithm is proposed, which could also be used to solve other constrained problems.
A multi-neighborhood tabu search for solving multi-budget maximum coverage problem
Pub. online:31 Mar 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 2 (2021), pp. 371–396
Abstract
In the family of Intelligent Transportation Systems (ITS), Multimodal Transport Systems (MMTS) have placed themselves as a mainstream transportation mean of our time as a feasible integrative transportation process. The Global Economy progressed with the help of transportation. The volume of goods and distances covered have doubled in the last ten years, so there is a high demand of an optimized transportation, fast but with low costs, saving resources but also safe, with low or zero emissions. Thus, it is important to have an overview of existing research in this field, to know what has already been done and what is to be studied next. The main objective is to explore a beneficent selection of the existing research, methods and information in the field of multimodal transportation research, to identify industry needs and research gaps and provide context for future research. The selective survey covers multimodal transport design and optimization in terms of: cost, time, and network topology. The multimodal transport theoretical aspects, context and resources are also covering various aspects. The survey‘s selection includes currently existing best methods and solvers for Intelligent Transportation Systems (ITS). The gap between theory and real-world applications should be further solved in order to optimize the global multimodal transportation system.